Skip to main content

Lifestyle Factors in the Prevention of Dementia: A Life Course Perspective

  • Chapter
  • First Online:
Health and Cognition in Old Age

Part of the book series: International Perspectives on Aging ((Int. Perspect. Aging,volume 10))

  • 1557 Accesses

Abstract

Dementia affects more than 36 million people worldwide. As a major cause of late-life functional dependence, institutionalization, poor quality of life, and mortality, dementia has posed a tremendous threat to public health and healthcare systems in both high- and middle-income countries. Preventing or postponing the onset of dementia by targeting major modifiable risk factors will significantly reduce the individual and societal burden of the disease. Dementia is a multifactorial disorder, in which the risk of dementia is determined by biological/genetic factors, environmental factors, and their interactions experienced over the lifespan. In the last two decades, a growing body of evidence from multidisciplinary research has suggested that lifestyle and metabolic risk factors (e.g., smoking, excessive alcohol consumption, physical inactivity, obesity, hypertension, diabetes, and hyperlipidemia) are involved in the development and progression of dementia. In particular, from a life course perspective, systematic reviews and meta-analyses of prospective studies have revealed the age-dependent association of dementia with major metabolic factors such as hypertension, obesity, and high cholesterol, i.e., possessing these factors in midlife, but not necessarily in late life, is associated with increased risk of dementia. The biological plausibility for lifestyle or metabolic risk factors to be involved in the pathogenesis and clinical expression of dementia is partly supported by neuroimaging and neuropathological studies. This has significant implications for developing intervention strategies against dementia, i.e., the multifactorial nature of dementia and the proper time-window over the lifespan for intervention should be taken into account in the future when designing preventative programs against this devastating disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ancelin ML, Carrière I, Barberger-Gateau P et al (2012) Lipid lowering agents, cognitive decline, and dementia: the Three-City Study. J Alzheimers Dis 30:629–637

    Google Scholar 

  • Anstey KJ, von Sanden C, Salim A, O’Kearney R (2007) Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol 166:367–378

    Article  Google Scholar 

  • Anstey KJ, Lipnicki DM, Low LF (2008) Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry 16:343–354

    Article  Google Scholar 

  • Anstey KJ, Mack HA, Cherbuin N (2009) Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies. Am J Geriatr Psychiatry 17:542–555

    Article  Google Scholar 

  • Anstey KJ, Cherbuin N, Budge M, Young J (2011) Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12:e426–e437

    Article  Google Scholar 

  • Arvanitakis Z, Leurgans SE, Barnes LL et al (2011) Microinfarct pathology, dementia, and cognitive systems. Stroke 42:722–727

    Article  Google Scholar 

  • Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10:819–828

    Article  Google Scholar 

  • Barnes DE, Covinsky K, Whitmer RA et al (2009) Predicting risk of dementia in older adults: the late-life dementia risk index. Neurology 73:173–179

    Article  Google Scholar 

  • Beydoun MA, Beydoun HA, Wang Y (2008) Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev 9: 204–218

    Article  Google Scholar 

  • Bowen ME (2012) A prospective examination of the relationship between physical activity and dementia risk in later life. Am J Health Promot 26:333–340

    Article  Google Scholar 

  • Brodaty H, Breteler MM, Dekosky ST et al (2011) The world of dementia beyond 2020. J Am Geriatr Soc 59:923–927

    Article  Google Scholar 

  • Buchman AS, Boyle PA, Yu L et al (2012) Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology 78:1323–1329

    Article  Google Scholar 

  • Casserly I, Topol E (2004) Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet 363:1139–1146

    Article  Google Scholar 

  • Cataldo JK, Prochaska JJ, Glantz SA (2010) Cigarette smoking is a risk factor for Alzheimer’s disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis 19:465–480

    Google Scholar 

  • Chan KY, Wang W, Wu JJ et al (2013) Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990-2010: a systematic review and analysis. Lancet 381:2016–2023

    Article  Google Scholar 

  • Chen R (2012) Association of environmental tobacco smoke with dementia and Alzheimer’s disease among never smokers. Alzheimers Dement 8:590–595

    Article  Google Scholar 

  • Cheng G, Huang C, Deng H, Wang H (2012) Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 42:484–491

    Article  Google Scholar 

  • Crane PK, Walker R, Hubbard RA (2013) Glucose levels and risk of dementia. N Engl J Med 369:540–548

    Article  Google Scholar 

  • Dahl Aslan A (2014) Obesity, cognitive ageing, and dementia: the usefulness of longitudinal studies to understand the obesity paradox. In: Leist AK, Kulmala J (eds) Health and cognition in old age. Springer, New York

    Google Scholar 

  • Debette S, Seshadri S, Beiser A et al (2011) Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 77:461–468

    Article  Google Scholar 

  • Dolan H, Crain B, Troncoso J et al (2010) Atherosclerosis, dementia, and Alzheimer’s disease in the BLSA cohort. Ann Neurol 68:231–240

    Google Scholar 

  • Duron E, Hanon O (2010) Antihypertensive treatments, cognitive decline, and dementia. J Alzheimers Dis 20:903–914

    Google Scholar 

  • Exalto LG, Quesenberry CP, Barnes D et al (2013) Midlife risk score for the prediction of dementia four decades later. Alzheimers Dement. pii: S1552-5260(13)02465-5

    Google Scholar 

  • Feldman HH, Doody RS, Kivipelto M et al (2010) Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 74:956–964

    Article  Google Scholar 

  • Fitzpatrick AL, Kuller LH, Lopez OL et al (2009) Midlife and late-life obesity and the risk of dementia: the Cardiovascular Health Study. Arch Neurol 66:336–342

    Article  Google Scholar 

  • Forti P, Pisacane N, Rietti E et al (2010) Metabolic syndrome and risk of dementia in older adults. J Am Geriatr Soc 58:487–492

    Article  Google Scholar 

  • Fratiglioni L, Qiu C (2013) Epidemiology of dementia. In: Dening T, Thomas A (eds) The Oxford textbook of old age psychiatry, 5th edn. Oxford University Press, New York, pp 389–413

    Google Scholar 

  • Garcia-Alloza M, Gregory J, Kuchibhotla KV et al (2011) Cerebrovascular lesions induce transient β-amyloid deposition. Brain 134:3697–3707

    Article  Google Scholar 

  • Gelber RP, Petrovitch H, Masaki KH et al (2012) Lifestyle and the risk of dementia in Japanese-American men. J Am Geriatr Soc 60:118–123

    Article  Google Scholar 

  • Gelber RP, Ross GW, Petrovitch H et al (2013) Antihypertensive medication use and risk of cognitive impairment: The Honolulu-Asia Aging Study. Neurology 81:888–895

    Article  Google Scholar 

  • Guan JW, Huang CQ, Li YH et al (2011) No association between hypertension and risk for Alzheimer’s disease: a meta-analysis of longitudinal studies. J Alzheimers Dis 27:799–807

    Google Scholar 

  • Haag MD, Hofman A, Koudstaal PJ et al (2009) Duration of antihypertensive drug use and risk of dementia: a prospective cohort study. Neurology 72:1727–1734

    Article  Google Scholar 

  • Hafsteinsdottir SH, Eiriksdottir G, Sigurdsson S et al (2012) Brain tissue volumes by APOE genotype and leisure activity-the AGES-Reykjavik Study. Neurobiol Aging 33:829.e1-8

    Article  Google Scholar 

  • Hamer M, Chida Y (2009) Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med 39:3–11

    Article  Google Scholar 

  • Herghelegiu AM, Prada GI (2014) Impact of metabolic control on cognitive function and health-related quality of life in older diabetics. In: Leist AK, Kulmala J (eds) Health and cognition in old age. Springer, New York

    Google Scholar 

  • Hoffman LB, Schmeidler J, Lesser GT et al (2009) Less Alzheimer disease neuropathology in medicated hypertensive than nonhypertensive persons. Neurology 72:1720–1726

    Article  Google Scholar 

  • Jagger C, McKee M, Christensen K et al (2013) Mind the gap–reaching the European target of a 2-year increase in healthy life years in the next decade. Eur J Public Health 23:829–833

    Article  Google Scholar 

  • Kalaria RN (2009) Neurodegenerative disease: diabetes, microvascular pathology and Alzheimer disease. Nat Rev Neurol 5:305–306

    Article  Google Scholar 

  • Kopf D, Frölich L (2009) Risk of incident Alzheimer’s disease in diabetic patients: a systematic review of prospective trials. J Alzheimers Dis 16:677–685

    Google Scholar 

  • Launer LJ, Hughes T, Yu B et al (2010) Lowering midlife levels of systolic blood pressure as a public health strategy to reduce late-life dementia: perspective from the Honolulu Heart Program/Honolulu Asia Aging Study. Hypertension 55:1352–1359

    Article  Google Scholar 

  • Launer LJ, Hughes TM, White LR (2011) Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging Study Autopsy Study. Ann Neurol 70:774–780

    Article  Google Scholar 

  • Levi Marpillat N, Macquin-Mavier I, Tropeano AI et al (2013) Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens 31:1073–1082

    Article  Google Scholar 

  • Li NC, Lee A, Whitmer RA et al (2010) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 340:b5465

    Article  Google Scholar 

  • Lin CH, Sheu WH (2013) Hypoglycaemic episodes and risk of dementia in diabetes mellitus: 7-year follow-up study. J Intern Med 273:102–110

    Article  Google Scholar 

  • Loef M, Walach H (2013) Midlife obesity and dementia: meta-analysis and adjusted forecast of dementia prevalence in the United States and China. Obesity (Silver Spring) 21:E51–E55

    Article  Google Scholar 

  • Lu FP, Lin KP, Kuo HK (2009) Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One 4:e4144

    Article  Google Scholar 

  • Matsuzaki T, Sasaki K, Tanizaki Y et al (2010) Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 75:764–770

    Article  Google Scholar 

  • Mayeda ER, Haan MN, Kanaya AM et al (2013) Type 2 diabetes and 10-year risk of dementia and cognitive impairment among older Mexican Americans. Diabetes Care 36:2600–2606

    Article  Google Scholar 

  • McGuinness B, Craig D, Bullock R, Passmore P (2009a) Statins for the prevention of dementia. Cochrane Database Syst Rev (2):CD003160

    Google Scholar 

  • McGuinness B, Todd S, Passmore P, Bullock R (2009b) Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database Syst Rev (4):CD004034

    Google Scholar 

  • McGuinness B, O’Hare J, Craig D et al (2013) Cochrane review on ‘Statins for the treatment of dementia’. Int J Geriatr Psychiatry 28:119–126

    Article  Google Scholar 

  • Morgan GS, Gallacher J, Bayer A et al (2012) Physical activity in middle-age and dementia in later life: findings from a prospective cohort of men in Caerphilly, South Wales and a meta-analysis. J Alzheimers Dis 31:569–580

    Google Scholar 

  • Norton MC, Dew J, Smith H et al (2012) Lifestyle behavior pattern is associated with different levels of risk for incident dementia and Alzheimer’s disease: the Cache County study. J Am Geriatr Soc 60:405–412

    Article  Google Scholar 

  • Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701

    Article  Google Scholar 

  • Peters R, Beckett N, Forette F et al (2008a) Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol 7:683–689

    Article  Google Scholar 

  • Peters R, Peters J, Warner J et al (2008b) Alcohol, dementia and cognitive decline in the elderly: a systematic review. Age Ageing 37:505–512

    Article  Google Scholar 

  • Peters R, Poulter R, Warner J et al (2008c) Smoking, dementia and cognitive decline in the elderly: a systematic review. BMC Geriatr 8:36

    Article  Google Scholar 

  • Power MC, Weuve J, Gagne JJ et al (2011) The association between blood pressure and incident Alzheimer disease: a systematic review and meta-analysis. Epidemiology 22:646–659

    Article  Google Scholar 

  • Prince M, Acosta D, Ferri CP et al (2012) Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study. Lancet 380:50–58

    Article  Google Scholar 

  • Prince M, Bryce R, Albanese E et al (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9:63–75

    Article  Google Scholar 

  • Profenno LA, Porsteinsson AP, Faraone SV (2010) Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatry 67:505–512

    Article  Google Scholar 

  • Qiu C (2011) Epidemiological findings of vascular risk factors in Alzheimer’s disease: implications for therapeutic and preventive intervention. Expert Rev Neurother 11:1593–1607

    Article  Google Scholar 

  • Qiu C (2012) Preventing Alzheimer’s disease by targeting vascular risk factors: hope and gap. J Alzheimers Dis 32:721–731

    Google Scholar 

  • Qiu C, Winblad B, Fratiglioni L (2005) The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 4:487–499

    Article  Google Scholar 

  • Qiu C, Cotch MF, Sigurdsson S et al (2010a) Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik Study. Neurology 75:2221–2228

    Article  Google Scholar 

  • Qiu C, Sigurdsson S, Zhang Q, et al (2014) Diabetes, markers of brain pathology and cognitive function: the Age, Gene/Environment Susceptibility-Reykjavik Study. Ann Neurol 75:138–146

    Article  Google Scholar 

  • Qiu C, Xu W, Fratiglioni L (2010b) Vascular and psychosocial factors for Alzheimer’s disease: epidemiological evidence toward intervention. J Alzheimers Dis 20:689–697

    Google Scholar 

  • Raffaitin C, Gin H, Empana JP et al (2009) Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: the Three-City Study. Diabetes Care 32:169–174

    Article  Google Scholar 

  • Reijmer YD, Leemans A, Brundel M et al (2013) Disruption of the cerebral white matter network is related to slowing of information processing speed in patients with type 2 diabetes. Diabetes 62:2112–2115

    Article  Google Scholar 

  • Reitz C, Tang MX, Schupf N et al (2010) A summary risk score for the prediction of Alzheimer disease in elderly persons. Arch Neurol 67:835–841

    Google Scholar 

  • Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152

    Article  Google Scholar 

  • Robine JM, Cambois E, Nusselder W et al (2013) The joint action on healthy life years (JA: EHLEIS). Arch Public Health 71:2

    Article  Google Scholar 

  • Rusanen M, Kivipelto M, Quesenberry CP Jr et al (2011) Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med 171:333–339

    Article  Google Scholar 

  • Sano M, Bell KL, Galasko D et al (2011) A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology 77:556–563

    Article  Google Scholar 

  • Scarmeas N, Luchsinger JA, Schupf N et al (2009) Physical activity, diet, and risk of Alzheimer disease. JAMA 302:627–637

    Article  Google Scholar 

  • Schneider JA, Arvanitakis Z, Bang W, Bennett DA (2007) Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69:2197–2204

    Article  Google Scholar 

  • Shepardson NE, Shankar GM, Selkoe DJ (2011) Cholesterol level and statin use in Alzheimer disease: II. Review of human trials and recommendations. Arch Neurol 68:1385–1392

    Article  Google Scholar 

  • Smith EE, Schneider JA, Wardlaw JM, Greenberg SM (2012) Cerebral microinfarcts: the invisible lesions. Lancet Neurol 11:272–282

    Article  Google Scholar 

  • Staessen JA, Thijs L, Richart T et al (2011) Placebo-controlled trials of blood pressure-lowering therapies for primary prevention of dementia. Hypertension 57:e6–e7

    Article  Google Scholar 

  • Stephan BCM (2014) Models for predicting risk of dementia: predictive accuracy and model complexity. In: Leist AK, Kulmala J (eds) Health and cognition in old age. Springer, New York

    Google Scholar 

  • Strozyk D, Dickson DW, Lipton RB et al (2010) Contribution of vascular pathology to the clinical expression of dementia. Neurobiol Aging 31:1710–1720

    Article  Google Scholar 

  • Tolppanen AM, Lavikainen P, Solomon A et al (2013) History of medically treated diabetes and risk of Alzheimer disease in a nationwide case-control study. Diabetes Care 36:2015–2019

    Article  Google Scholar 

  • Vagelatos NT, Eslick GD (2013) Type 2 diabetes as a risk factor for Alzheimer’s disease: the confounders, interactions, and neuropathology associated with this relationship. Epidemiol Rev 35:152–160

    Article  Google Scholar 

  • van Elderen SG, de Roos A, de Craen A et al (2010) Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up. Neurology 75:997–1002

    Article  Google Scholar 

  • Viswanathan A, Rocca WA, Tzourio C (2009) Vascular risk factors and dementia: how to move forward? Neurology 72:368–374

    Article  Google Scholar 

  • Wharton SB, Brayne C, Savva GM et al (2011) Epidemiological neuropathology: the MRC Cognitive Function and Aging Study experience. J Alzheimers Dis 25:359–372

    Google Scholar 

  • Whitmer RA, Karter AJ, Yaffe K et al (2009) Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 301:1565–1572

    Article  Google Scholar 

  • Wimo A, Jönsson L, Bond J et al (2013) The worldwide economic impact of dementia 2010. Alzheimers Dement 9:1–11.e3

    Article  Google Scholar 

  • Wong WB, Lin VW, Boudreau D, Devine EB (2013) Statins in the prevention of dementia and Alzheimer’s disease: a meta-analysis of observational studies and an assessment of confounding. Pharmacoepidemiol Drug Saf 22:345–358

    Article  Google Scholar 

  • Xu W, Qiu C, Gatz M et al (2009) Mid- and late-life diabetes in relation to the risk of dementia: a population-based twin study. Diabetes 58:71–77

    Article  Google Scholar 

  • Yaffe K, Falvey CM, Hamilton N et al (2013) Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Intern Med 173:1300–1306

    Article  Google Scholar 

  • Yasar S, Xia J, Yao W et al (2013) Antihypertensive drugs decrease risk of Alzheimer disease: Ginkgo Evaluation of Memory Study. Neurology 81:896–903

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Program Future Leaders of Ageing Research in Europe (FLARE), coordinated by the European Research Area in Ageing (ERA-AGE). Dr. C. Qiu was supported in part by the Swedish Council for Working Life and Social Research (FAS), Swedish Research Council (VR), Swedish Brain Power, and Karolinska Institute, Stockholm, Sweden. I would like to thank Dr. Yajun Liang for providing thoughtful comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxuan Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Qiu, C. (2014). Lifestyle Factors in the Prevention of Dementia: A Life Course Perspective. In: Leist, A., Kulmala, J., Nyqvist, F. (eds) Health and Cognition in Old Age. International Perspectives on Aging, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-06650-9_11

Download citation

Publish with us

Policies and ethics