Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 290 Accesses

Abstract

Dendrimer modified and plain magnetite nanoparticles (MNP) have been extensively studied for their potential application in environmental decontamination, medicine and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reprinted from “L.J. Daumann et al., “Immobilization of the enzyme GpdQ on magnetite nanoparticles for organophosphate pesticide bioremediation” J. Inorg. Biochem. 2014, 131, 1–7”, Copyright (2014), with permission from Elsevier:

References

  1. B.-F. Pan, F. Gao, H.-C. Gu, J. Colloid Interface Sci. 284, 1–6 (2005)

    Article  CAS  Google Scholar 

  2. F. Gao, B.-F. Pan, W.-M. Zheng, L.-M. Ao, H.-C. Gu, J. Magn. Magn. Mater. 293, 48–54 (2005)

    Article  CAS  Google Scholar 

  3. C. Grüttner, V. Böhmer, A. Casnati, J.-F. Dozol, D.N. Reinhoudt, M.M. Reinoso-Garcia, S. Rudershausen, J. Teller, R. Ungaro, W. Verboom, P. Wang, J. Magn. Magn. Mater. 293, 559–566 (2005)

    Article  Google Scholar 

  4. R.D. Ambashta, M. Sillanpää, J. Hazard. Mater. 180, 38–49 (2010)

    Article  CAS  Google Scholar 

  5. B. Yoza, A. Arakaki, T. Matsunaga, J. Biotechnol. 101, 219–228 (2003)

    Article  CAS  Google Scholar 

  6. Y. Zheng, C. Duanmu, Y. Gao, Org. Lett. 8, 3215–3217 (2006)

    Article  CAS  Google Scholar 

  7. A.H. Mansee, W. Chen, A. Mulchandani, Biotechnol. Bioprocess Eng. 5, 436–440 (2000)

    Article  CAS  Google Scholar 

  8. D.M. Munnecke, Biotechnol. Bioeng. 21, 2247–2261 (1979)

    Article  CAS  Google Scholar 

  9. S. Caldwell, F. Raushel, Appl. Biochem. Biotechnol. 31, 59–73 (1991)

    Article  CAS  Google Scholar 

  10. W. Chen, A. Mulchandani, A.H. Mansee, J. Ind. Microbiol. Biotechnol. 32, 554–560 (2005)

    Article  Google Scholar 

  11. A.H. Mansee, W. Chen, A. Mulchandani, J. Ind. Microbiol. Biotechnol. 32, 554–560 (2005)

    Article  CAS  Google Scholar 

  12. R. Schoevaart, M.W. Wolbers, M. Golubovic, M. Ottens, A.P.G. Kieboom, F. van Rantwijk, L.A.M. van der Wielen, R.A. Sheldon, Biotechnol. Bioeng. 87, 754–762 (2004)

    Article  CAS  Google Scholar 

  13. R.A. Sheldon, Biochem. Soc. Trans. 35, 1583 (2007)

    Article  CAS  Google Scholar 

  14. R.A. Sheldon, Appl. Microbiol. Biotechnol. 92, 467–477 (2011)

    Article  CAS  Google Scholar 

  15. P. Styring, C. Grindon, C.M. Fisher, Catal. Lett. 77, 219–225 (2001)

    Article  CAS  Google Scholar 

  16. K. Li, J. Zhang, Z.-W. Zhang, Y.-Z. Xiang, H.-H. Lin, X.-Q. Yu, J. Appl. Polym. Sci. 111, 2485–2492 (2009)

    Article  CAS  Google Scholar 

  17. J. Yang, P. Li, L. Wang, Synthesis 2011(1295), 1301 (2011)

    Google Scholar 

  18. Q.H. Xia, H.Q. Ge, C.P. Ye, Z.M. Liu, K.X. Su, Chem. Rev. 105, 1603–1662 (2005)

    Google Scholar 

  19. V. Sciannamea, A. Debuigne, Y. Piette, R. Jerome, C. Detrembleur, Chem. Commun. (40), 4180–4182 (2006)

    Google Scholar 

  20. C. Piovezan, R. Jovito, A.J. Bortoluzzi, Hn Terenzi, F.L. Fischer, P.C. Severino, C.T. Pich, G.G. Azzolini, R.A. Peralta, L.M. Rossi, A. Neves, Inorg. Chem. 49, 2580–2582 (2010)

    Article  CAS  Google Scholar 

  21. Y.L.M. Zee, L.R. Gahan, G. Schenk, Aust. J. Chem. 64, 258–264 (2011)

    Article  CAS  Google Scholar 

  22. G. Zaupa, L.J. Prins, P. Scrimin, Bioorg. Med. Chem. Lett. 19, 3816–3820 (2009)

    Article  CAS  Google Scholar 

  23. A. Mangalum, R.C. Smith, Tetrahedron 65, 4298–4303 (2009)

    Article  CAS  Google Scholar 

  24. S. Striegler, M. Dittel, Inorg. Chem. 44, 2728–2733 (2005)

    Article  CAS  Google Scholar 

  25. E. Díez-Barra, J.M. Fraile, J.I. García, E. García-Verdugo, C.I. Herrerías, S.V. Luis, J.A. Mayoral, P. Sánchez-Verdú, J. Tolosa, Tetrahedron Asymmetry 14, 773–778 (2003)

    Article  Google Scholar 

  26. S. Carloni, V. Borzatta, L. Moroni, G. Tanzi, G. Sartori, R. Maggi, Patent WO2005123254A1 Catalysts based on metal complexes for the synthesis of optically active chrysanthemic acid, p. 55, 2005

    Google Scholar 

  27. R.V. Jones, L. Godorhazy, N. Varga, D. Szalay, L. Urge, F. Darvas, J. Comb. Chem. 8, 110–116 (2006)

    Article  CAS  Google Scholar 

  28. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978)

    Google Scholar 

  29. C.S. Ltd, CasaXPS: Processing Software for XPS, AES, SIMS and More (2009)

    Google Scholar 

  30. L. Jie, X. Chao, J Non-Cryst Solids 119, 37–40 (1990)

    Article  Google Scholar 

  31. NIST, X-ray Photoelectron Spectroscopy Database, Version 4.1, http://srdata.nist.gov/xps/. Accessed 20 Feb 2013

  32. G.L. Weissler, R.W. Carlson, Vacuum Physics and Technology (Academic, New York, 1979)

    Google Scholar 

  33. H.-L. Lee, N. Flynn, in Handbook of Applied Solid State Spectroscopy, ed. by D.R. Vij (Springer, US, 2006, ch. 11), pp. 485–507

    Google Scholar 

  34. C.D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Physical Electronics Division, Minnesota, USA, 1979)

    Google Scholar 

  35. R. Santini, M.C. Griffith, M. Qi, Tetrahedron Lett. 39, 8951–8954 (1998)

    Article  CAS  Google Scholar 

  36. B. Bauer-Siebenlist, S. Dechert, F. Meyer, Chem.Eur. J. 11, 5343–5352 (2005)

    Google Scholar 

  37. A. Baykal, M.S. Toprak, Z. Durmus, M. Senel, H. Sozeri, A. Demir, J. Supercond. Novel Magn. 25, 1541–1549 (2012)

    Article  CAS  Google Scholar 

  38. B.J. Tan, K.J. Klabunde, P.M.A. Sherwood, Chem. Mater. 2, 186–191 (1990)

    Article  CAS  Google Scholar 

  39. J.C. Vickerman, Surface Analysis: the Principal Techniques (Wiley, New York, 1997)

    Google Scholar 

  40. J. Guild, The Interference Systems of Crossed Diffraction Gratings: theory of Moire Fringes (Clarendon, Oxford, 1956)

    Google Scholar 

  41. L.S. Wong, F. Khan, J. Micklefield, Chem. Rev. 109, 4025–4053 (2009)

    Google Scholar 

  42. B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, J.A. Cuesta-Seijo, R. Herbst-Irmer, H. Pritzkow, Inorg. Chem. 43, 4189–4202 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Josefine Daumann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daumann, L.J. (2014). Immobilization of GpdQ and Related Models for Bioremedial Applications. In: Spectroscopic and Mechanistic Studies of Dinuclear Metallohydrolases and Their Biomimetic Complexes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06629-5_8

Download citation

Publish with us

Policies and ethics