Skip to main content

Spectroscopic and Mechanistic Studies of Co(II) Phosphoesterase and Metallo-β-lactamase Biomimetics

  • Chapter
  • First Online:
Spectroscopic and Mechanistic Studies of Dinuclear Metallohydrolases and Their Biomimetic Complexes

Part of the book series: Springer Theses ((Springer Theses))

  • 289 Accesses

Abstract

Cobalt is a transition metal that is less abundant in nature than most other first row transition metals [1]. However, as a cofactor for Vitamin B12 it is an essential trace element for humans [2]. Cobalt is usually found to be coordinated by a corrin ligand backbone in natural systems and one of the few true organometallic compounds in nature is the Co(III)-alkyl group in Vitamin B12 (the only known vitamin to contain a metal ion) [3]. A few Co(II) containing enzymes such as prolidase, nitrile hydratase, bromoperoxidase or glucose isomerase have been isolated from bacteria [2]. However, Co(II) is extensively used as spectroscopic probe for Zn(II)-containing enzyme active sites due to its unique spectroscopic and magnetic properties. Often the catalytic activity in the cobalt substituted protein is retained [4]. The active site geometry employed by Co(II) is often found to be virtually identical to the Zn(II) enzyme in crystallographic studies [4]. The most common oxidation states are Co(II) and Co(III), with the Co(II) always having unpaired electrons rendering the ion paramagnetic [1]. Octahedral or tetrahedral geometries are easily distinguished in the electronic absorption spectra, with the absorption band of the octahedral Co(II) displaying a characteristic splitting from spin-orbit coupling [5]. Structures and inhibitor/substrate interactions in Zn(II) enzymes such as carboanhydrase, carboxypeptidase A, alcohol dehydrogenase or alkaline phosphatase have been analyzed with cobalt substitution but also Cu(I)/(II) and Fe(II)/(III) enzymes have been analyzed with this method [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parts of this Chapter have been reprinted with permission from (L.J. Daumann et al., Synthesis, Magnetic Properties, and Phosphoesterase Activity of Dinuclear Cobalt(II) Complexes. Inorganic Chemistry 2013 52(4), 2029–2043). Copyright (2013) American Chemical Society and in L.J. Daumann et al., “Dinuclear Cobalt(II) Complexes as Metallo-β-lactamase Mimics. Eur. J. Inorg. Chem. 2013, 17, 3082–3089.

References

  1. N. Wiberg, A.F. Holleman, E. Wiberg, Inorganic Chemistry (Academic Press, NY, 2001)

    Google Scholar 

  2. J.J.R.F. da Silva, R.J.P. Williams, The Biological Chemistry of the Elements: The Inorganic Chemistry of Life (Oxford University Press, NY, 2001)

    Google Scholar 

  3. J. Webb, P. Morris, J. Chem. Educ. 52, 53 (1975)

    Article  CAS  Google Scholar 

  4. W.M.B.L. Vallee, in Methods Enzymol, vol 226, ed. by F.R. James, L.V. Bert (Academic Press, New York, 1993), pp. 52–71

    Google Scholar 

  5. J.A. Larrabee, C.M. Alessi, E.T. Asiedu, J.O. Cook, K.R. Hoerning, L.J. Klingler, G.S. Okin, S.G. Santee, T.L. Volkert, J. Am. Chem. Soc. 119, 4182–4196 (1997)

    Article  CAS  Google Scholar 

  6. K.S. Hadler, N. Mitic, S.H. Yip, L.R. Gahan, D.L. Ollis, G. Schenk, J.A. Larrabee, Inorg. Chem. 49, 2727–2734 (2010)

    Article  CAS  Google Scholar 

  7. G. Schenk, F. Ely, K.S. Hadler, N. Mitić, L.R. Gahan, D.L. Ollis, N.M. Plugis, M.T. Russo, J.A. Larrabee, J. Biol. Inorg. Chem. 16, 777–787 (2011)

    Article  Google Scholar 

  8. E.I. Solomon, Inorg. Chem. 40, 3656–3669 (2001)

    Article  CAS  Google Scholar 

  9. E.I. Solomon, K.O. Hodgson, Spectroscopic Methods in Bioinorganic Chemistry (American Chemical Society, New York, 1998)

    Book  Google Scholar 

  10. W.R. Mason, A Practical Guide to Magnetic Circular Dichroism Spectroscopy (Wiley-Interscience, Hoboken, 2007)

    Book  Google Scholar 

  11. F. Neese, Power Point Presentation, Max Planck Insitut für Bioanorganische Chemie Mülheim an der Ruhr (2004)

    Google Scholar 

  12. J.A. Larrabee, W.R. Johnson, A.S. Volwiler, Inorg. Chem. 48, 8822–8829 (2009)

    Article  CAS  Google Scholar 

  13. E.I. Solomon, A. Decker, N. Lehnert, Proc. Natl. Acad. Sci. U. S. A. 100, 3589–3594 (2003)

    Article  CAS  Google Scholar 

  14. F.B. Johansson, A.D. Bond, U.G. Nielsen, B. Moubaraki, K.S. Murray, K.J. Berry, J.A. Larrabee, C.J. McKenzie, Inorg. Chem. 47, 5079–5092 (2008)

    Article  CAS  Google Scholar 

  15. K.S. Hadler, E.A. Tanifum, S.H. Yip, N. Mitić, L.W. Guddat, C.J. Jackson, L.R. Gahan, K. Nguyen, P.D. Carr, D.L. Ollis, A.C. Hengge, J.A. Larrabee, G. Schenk, J. Am. Chem. Soc. 130, 14129–14138 (2008)

    Article  CAS  Google Scholar 

  16. F. Ely, K.S. Hadler, N. Mitić, L.R. Gahan, D.L. Ollis, N.M. Plugis, M.T. Russo, J.A. Larrabee, G. Schenk, J. Biol. Inorg. Chem. 16, 777–787 (2011)

    Article  CAS  Google Scholar 

  17. J.A. Larrabee, S.A. Chyun, A.S. Volwiler, Inorg. Chem. 47, 10499–10508 (2008)

    Article  CAS  Google Scholar 

  18. B.N. Figgis, Ligand Field Theory and Its Applications (Wiley, NY, 2000)

    Google Scholar 

  19. S.M. Ostrovsky, R. Werner, D.A. Brown, W. Haase, Chem. Phys. Lett. 353, 290–294 (2002)

    Article  CAS  Google Scholar 

  20. H. Sakiyama, Inorg. Chim. Acta 360, 715–716 (2007)

    Article  CAS  Google Scholar 

  21. M.J. Hossain, M. Yamasaki, M. Mikuriya, A. Kuribayashi, H. Sakiyama, Inorg. Chem. 41, 4058–4062 (2002)

    Article  CAS  Google Scholar 

  22. H. Sakiyama, R. Ito, H. Kumagai, K. Inoue, M. Sakamoto, Y. Nishida, M. Yamasaki, Eur. J. Inorg. Chem. 2001, 2027–2032 (2001)

    Article  Google Scholar 

  23. H. Sakiyama, J. Chem. Software 7, 171–177 (2001)

    Article  CAS  Google Scholar 

  24. L. Noodleman, J. Chem. Phys. 74, 5737–5743 (1981)

    Article  CAS  Google Scholar 

  25. E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Comput. Chem. 20, 1391–1400 (1999)

    Article  CAS  Google Scholar 

  26. G. Cavigliasso, R. Stranger, Inorg. Chem. 47, 3072–3083 (2008)

    Article  CAS  Google Scholar 

  27. D.R. Jones, L.F. Lindoy, A.M. Sargeson, J. Am. Chem. Soc. 106, 7807–7819 (1984)

    Article  CAS  Google Scholar 

  28. R.E. Mirams, S.J. Smith, K.S. Hadler, D.L. Ollis, G. Schenk, L.R. Gahan, J. Biol. Inorg. Chem. 13, 1065–1072 (2008)

    Article  CAS  Google Scholar 

  29. P. Karsten, A. Neves, A.J. Bortoluzzi, M. Lanznaster, V. Drago, Inorg. Chem. 41, 4624–4626 (2002)

    Article  CAS  Google Scholar 

  30. A. Neves, M. Lanznaster, A.J. Bortoluzzi, R.A. Perlata, A. Casellato, E.E. Castellano, P. Herrald, M.J. Riley, G. Schenk, J. Am. Chem. Soc. 129, 7486–7487 (2007)

    Article  CAS  Google Scholar 

  31. R.R. Buchholz, M.E. Etienne, A. Dorgelo, R.E. Mirams, S.J. Smith, S.Y. Chow, L.R. Hanton, G.B. Jameson, G. Schenk, L.R. Gahan, Dalton Trans. 43, 6045–6054 (2008)

    Google Scholar 

  32. L.R. Gahan, S.J. Smith, A. Neves, G. Schenk, Eur. J. Inorg. Chem. 19, 2745–2758 (2009)

    Article  Google Scholar 

  33. R.A. Peralta, A.J. Bortoluzzi, B. de Souza, R. Jovito, F.R. Xavier, R.A.A. Couto, A. Casellato, F. Nome, A. Dick, L.R. Gahan, G. Schenk, G.R. Hanson, F.C.S. de Paula, E.C. Pereira-Maia, S.d.P. Machado, P.C. Severino, C. Pich, T. Bortolotto, H. Terenzi, E.E. Castellano, A. Neves, M.J. Riley, Inorg. Chem. 49, 11421–11438 (2010)

    Google Scholar 

  34. B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, S. Dechert, Chem. Eur. J. 11, 4349–4360 (2005)

    Google Scholar 

  35. S.C. Batista, A. Neves, A.J. Bortoluzzi, I. Vencato, R.A. Peralta, B. Szpoganicz, V.V.E. Aires, H. Terenzi, P.C. Severino, Inorg. Chem. Commun. 6, 1161–1165 (2003)

    Article  CAS  Google Scholar 

  36. M. Lanznaster, A. Neves, A.J. Bortoluzzi, B. Szpoganicz, E. Schwingel, Inorg. Chem. 41, 5641–5643 (2002)

    Article  CAS  Google Scholar 

  37. J.S. Seo, N.-D. Sung, R.C. Hynes, J. Chin, Inorg. Chem. 35, 7472–7473 (1996)

    Article  CAS  Google Scholar 

  38. S.J. Smith, R.A. Peralta, R. Jovito, A. Horn, A.J. Bortoluzzi, C.J. Noble, G.R. Hanson, R. Stranger, V. Jayaratne, G. Cavigliasso, L.R. Gahan, G. Schenk, O.R. Nascimento, A. Cavalett, T. Bortolotto, G. Razzera, H. Terenzi, A. Neves, M.J. Riley, Inorg. Chem. 51, 2065–2078 (2012)

    Article  CAS  Google Scholar 

  39. G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22, 931–967 (2001)

    Google Scholar 

  40. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, NY, 1978)

    Google Scholar 

  41. F.A. Cotton, Advanced Inorganic Chemistry (Wiley, NY, 1999)

    Google Scholar 

  42. J.-L. Tian, W. Gu, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, Z. Anorg, Allg. Chem. 634, 1775–1779 (2008)

    Article  CAS  Google Scholar 

  43. D.F. Evans, J. Chem. Soc. 2003 (1959)

    Google Scholar 

  44. Thermo-Scientific, Grams/AI 9.0 Software

    Google Scholar 

  45. M.J. Riley, VTVH 2.1.1 Program for the simulation and fitting variable temperature—variable field MCD spectra (2008)

    Google Scholar 

  46. C. Fonseca Guerra, J.G. Snijders, G. te Velde, E.J. Baerends, Theor. Chim. Acta 99, 391–403 (1998)

    Google Scholar 

  47. H. Adamsky, AOMX Program (1996)

    Google Scholar 

  48. I.H. Segel, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley, NY, 1975)

    Google Scholar 

  49. M. Maeder, ReactLab KINETICS

    Google Scholar 

  50. M. Livieri, F. Mancin, U. Tonellato, J. Chin, Chem. Commun. (24), 2862–2863 (2004)

    Google Scholar 

  51. J. Xia, Y.B. Shi, Y. Zhang, Q. Miao, W.X. Tang, Inorg. Chem. 42, 70–77 (2003)

    Article  CAS  Google Scholar 

  52. J. Burgess, Metal Ions in Solution (Halsted Press, Chichester, 1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Josefine Daumann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daumann, L.J. (2014). Spectroscopic and Mechanistic Studies of Co(II) Phosphoesterase and Metallo-β-lactamase Biomimetics. In: Spectroscopic and Mechanistic Studies of Dinuclear Metallohydrolases and Their Biomimetic Complexes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06629-5_6

Download citation

Publish with us

Policies and ethics