Skip to main content

Mechanistic Studies of Cd(II) Complexes as Phosphoesterase and Metallo-β-lactamase Models

  • Chapter
  • First Online:
  • 275 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Cadmium gained its name from the Greek word for kadmeia which is an ancient name for Zn(II) oxide [1]. Cadmium is similar in some ways to Zn(II) and the most common oxidation state is Cd(II). In coordination compounds Cd(II) is often found hepta-coordinate [2, 3]. Cd(II) is often used as a sensor for structural and mechanistic studies of proteins in which Zn(II) is substituted by Cd(II) in their active centers. Often a higher hydrolytic activity is found than in the corresponding Zn(II) enzymes and complexes [2]. This might be due to the increased number of ligands (nucleophiles, substrate) that are possible to bind and exchange at the Cd(II) center. 113Cd NMR spectroscopy is a method used for structure elucidation in biological, inorganic and organometallic cadmium-containing samples [5, 6].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Parts of this Chapter have been reprinted with permission from (L.J. Daumann et al., "Cadmium(II) Complexes: Mimics of Organophosphate Pesticide Degrading Enzymes and Metallo-β-lactamases" Inorg. Chem. 2012, 51, 7669–7681). Copyright (2014) American Chemical Society.

References

  1. M. Eagleson, Concise Encyclopedia Chemistry (Walter de Gruyter, New York, 1994)

    Google Scholar 

  2. R.E. Mirams, S.J. Smith, K.S. Hadler, D.L. Ollis, G. Schenk, L.R. Gahan, J. Biol. Inorg. Chem. 13, 1065–1072 (2008)

    Article  CAS  Google Scholar 

  3. V. Aletras, N. Hadjiliadis, D. Stabaki, A. Karaliota, M. Kamariotaki, I. Butler, J.C. Plakatouras, S. Perlepes, Polyhedron 16, 1399–1402 (1997)

    Article  CAS  Google Scholar 

  4. K.Y. Choi, Y.M. Jeon, K.C. Lee, H. Ryu, M. Suh, H.S. Park, M.J. Kim, Y.H. Song, J. Chem. Crystallogr. 34, 591–596 (2004)

    Article  CAS  Google Scholar 

  5. M.F. Summers, Coord. Chem. Rev. 86, 43–134 (1988)

    Article  CAS  Google Scholar 

  6. E. Kolehmainen, in Encyclopedia of Spectroscopy and Spectrometry, ed. by L. John (Academic Press, Oxford, 1999), pp. 834–843

    Google Scholar 

  7. J.K. Bohlke, J. Phys. Chem. Ref. Data 34, 57 (2005)

    Article  CAS  Google Scholar 

  8. T.W. Lane, M.A. Saito, G.N. George, I.J. Pickering, R.C. Prince, F.M. Morel, Nature 435, 42 (2005)

    Article  CAS  Google Scholar 

  9. Y. Xu, L. Feng, P.D. Jeffrey, Y. Shi, F.M.M. Morel, Nature 452, 56–61 (2008)

    Article  CAS  Google Scholar 

  10. A. Dolega, K. Baranowska, J. Gajda, S. Kazmierski, M.J. Potrzebowski, Inorg. Chim. Acta 360, 2973–2982 (2007)

    Google Scholar 

  11. L.M. Berreau, Adv. Phys. Org. Chem. 41, 79–181 (2006)

    CAS  Google Scholar 

  12. F.E. Jacobsen, S.M. Cohen, in Using cobalt(II) and cadmium(II) Substituted Model Complexes to Improve zinc(II)-metalloprotein Inhibitor Design. 229th ACS National Meeting, in San Diego, CA, 2005

    Google Scholar 

  13. J. Hsieh, M.A. Viktora, D. Rabinovich, in Mononuclear Cadmium Complexes with Sulfur-rich Coordination Environments. 56th Southeast Regional Meeting, 2004

    Google Scholar 

  14. A. Dolega, K. Baranowska, D. Gudat, A. Herman, J. Stangret, A. Konitz, M. Smiechowski, S. Godlewska, Eur. J. Inorg. Chem. 2009(24), 3644–3660 (2009)

    Google Scholar 

  15. A. Dolega, Wiad. Chem. 64, 389–411 (2010)

    CAS  Google Scholar 

  16. K. Pladzyk, D. Baranowska, S. Gudat, M. Godlewska, J. Wieczerzak, M. Chojnacki, K. Bulman, Januszewicz, A. Dolega, Polyhedron 30, 1191–1200 (2011)

    Article  CAS  Google Scholar 

  17. K. Byriel, L. Gahan, C. Kennard, J. Latten, P. Healy, Aust. J. Chem. 46, 713–719 (1993)

    Article  CAS  Google Scholar 

  18. E. Tomat, L. Cuesta, V.M. Lynch, J.L. Sessler, Inorg. Chem. 46, 6224–6226 (2007)

    Article  CAS  Google Scholar 

  19. M.A. Harvey, S. Baggio, M.T. Garland, R. Baggio, J. Coord. Chem. 58, 243–253 (2005)

    Article  CAS  Google Scholar 

  20. K.S. Hadler, E.A. Tanifum, S.H. Yip, N. Mitić, L.W. Guddat, C.J. Jackson, L.R. Gahan, K. Nguyen, P.D. Carr, D.L. Ollis, A.C. Hengge, J.A. Larrabee, G. Schenk, J. Am. Chem. Soc. 130, 14129–14138 (2008)

    Article  CAS  Google Scholar 

  21. K.S. Hadler, L.R. Gahan, D.L. Ollis, G. Schenk, J. Inorg. Biochem. 104, 211–213 (2010)

    Article  CAS  Google Scholar 

  22. F. Ely, K.S. Hadler, L.R. Gahan, L.W. Guddat, D.L. Ollis, G. Schenk, Biochem. J. 432, 565–573 (2010)

    Article  CAS  Google Scholar 

  23. M. Damblon, A. Jensen, I. Ababou, C. Barsukov, C.J. Papamicael, L. Schofield, R. Olsen, Bauer, G.C. Roberts, J. Biol. Chem. 278, 29240–29251 (2003)

    Article  CAS  Google Scholar 

  24. L. Hemmingsen, C. Damblon, J. Antony, M. Jensen, H.W. Adolph, S. Wommer, G.C. Roberts, R. Bauer, J. Am. Chem. Soc. 123, 10329–10335 (2001)

    Article  CAS  Google Scholar 

  25. N.O. Concha, B.A. Rasmussen, K. Bush, O. Herzberg, Protein Sci. 6, 2671–2676 (1997)

    Article  CAS  Google Scholar 

  26. N.V. Kaminskaia, B. Spingler, S.J. Lippard, J. Am. Chem. Soc. 123, 6555–6563 (2001)

    Article  CAS  Google Scholar 

  27. C. Cojocel, Beta-Lactam Antibiotics (Springer, Boston, 2008)

    Google Scholar 

  28. L.E. Asbel, M.E. Levison, Infect. Dis. Clin. North Am. 14, 435–447 (2000)

    Article  CAS  Google Scholar 

  29. M.W. Crowder, J. Spencer, A.J. Vila, Acc. Chem. Res. 39, 721–728 (2006)

    Article  CAS  Google Scholar 

  30. N.P. Sharma, C. Hajdin, S. Chandrasekar, B. Bennet, K.-W. Yang, M.W. Crowder, Biochemistry 45, 10729–10738 (2006)

    Article  CAS  Google Scholar 

  31. Z. Wang, W. Fast, S.J. Benkovic, J. Am. Chem. Soc. 120, 10788–10789 (1998)

    Article  CAS  Google Scholar 

  32. F. Meyer, H. Pritzkow, Eur. J. Inorg. Chem. 2005(12), 2346–2351 (2005)

    Google Scholar 

  33. J. Weston, Chem. Rev. 105, 2151–2174 (2005). (Washington, DC)

    Google Scholar 

  34. A. Tamilselvi, G. Mugesh, J. Biol. Inorg. Chem. 13, 1039–1053 (2008)

    Google Scholar 

  35. G. Parkin, Chem. Rev. 104, 699–767 (2004). (Washington, DC)

    Google Scholar 

  36. M. Umayal, G. Mugesh, Inorg. Chim. Acta 372, 353–361 (2011)

    Article  CAS  Google Scholar 

  37. A. Tamilselvi, M. Nethaji, G. Mugesh, Chem. Eur. J. 12, 7797–7806 (2006)

    Google Scholar 

  38. B. Bauer-Siebenlist, S. Dechert, F. Meyer, Chem. Eur. J. 11, 5343–5352 (2005)

    Google Scholar 

  39. N.V. Kaminskaia, C. He, S.J. Lippard, Inorg. Chem. 39, 3365–3373 (2000)

    Article  CAS  Google Scholar 

  40. A. Tamilselvi, G. Mugesh, Chem. Eur. J. 16, 8878–8886 (2010)

    Google Scholar 

  41. N.V. Kaminskaia, B. Spingler, S.J. Lippard, J. Am. Chem. Soc. 122, 6411–6422 (2000)

    Article  CAS  Google Scholar 

  42. Z. Wang, W. Fast, S.J. Benkovic, Biochemistry 38, 10013–10023 (1999)

    Article  CAS  Google Scholar 

  43. Y.J. Dong, M. Bartlam, L. Sun, Y.F. Zhou, Z.P. Zhang, C.G. Zhang, Z.H. Rao, X.E. Zhang, J. Mol. Biol. 353, 655–663 (2005)

    Article  CAS  Google Scholar 

  44. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, NY, 1978)

    Google Scholar 

  45. M. Asso, R. Panossian, M. Guiliano, Spectrosc. Lett. 17, 271–278 (1984)

    Article  CAS  Google Scholar 

  46. M. Maeder, ReactLab KINETICS

    Google Scholar 

  47. B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, S. Dechert, Chem. Eur. J. 11, 4349–4360 (2005)

    Google Scholar 

  48. B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, J. A. Cuesta-Seijo, R. Herbst-Irmer, H. Pritzkow, Inorg. Chem. 43, 4189–4202 (2004)

    Google Scholar 

  49. C. Bazzicalupi, A. Bencini, E. Berni, A. Bianchi, V. Fedi, V. Fusi, C. Giorgi, P. Paolettti, B. Valtancoli, Inorg. Chem. 38, 4115–4122 (1999)

    Google Scholar 

  50. P.J. Montoya-Pelaez, R.S. Brown, Inorg. Chem. 41, 309–316 (2002)

    Article  CAS  Google Scholar 

  51. L.J. Daumann, K.E. Dalle, G. Schenk, R.P. McGeary, P.V. Bernhardt, D.L. Ollis, L.R. Gahan, Dalton Trans. 41, 1695–1708 (2012)

    Article  CAS  Google Scholar 

  52. E. Kimura, T. Koike, T. Shiota, Y. Iitaka, Inorg. Chem. 29, 4621–4629 (1990)

    Google Scholar 

  53. J.W. Chen, X.Y. Wang, Y.G. Zhu, J. Lin, X.L. Yang, Y.Z. Li, Y. Lu, Z.J. Guo, Inorg. Chem. 44, 3422–3430 (2005)

    Article  CAS  Google Scholar 

  54. R.A. Peralta, A.J. Bortoluzzi, B. de Souza, R. Jovito, F.R. Xavier, R.A.A. Couto, A. Casellato, F. Nome, A. Dick, L.R. Gahan, G. Schenk, G.R. Hanson, F.C.S. de Paula, E.C. Pereira-Maia, S.d.P. Machado, P.C. Severino, C. Pich, T. T. Bortolotto, H. Terenzi, E.E. Castellano, A. Neves, M.J. Riley, Inorg. Chem. 49, 11421–11438 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Josefine Daumann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daumann, L.J. (2014). Mechanistic Studies of Cd(II) Complexes as Phosphoesterase and Metallo-β-lactamase Models. In: Spectroscopic and Mechanistic Studies of Dinuclear Metallohydrolases and Their Biomimetic Complexes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06629-5_5

Download citation

Publish with us

Policies and ethics