Skip to main content

Structural and Mechanistic Studies of Zn(II) Complexes as Phosphoesterase Models

  • Chapter
  • First Online:
  • 290 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Zn(II) is a common metal in all forms of life; it is not only the second most abundant metal in biological systems after iron, but also occurs in the active site of over 200, mostly hydrolytic, enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Parts of this chapter have appeared in [L.J. Daumann et al., “Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes” Dalton Trans. 2014, 43, 910–928. and L.J. Daumann et al., “The Role of Zn-OR and Zn-OH Nucleophiles and the Influence of p-Substituents in the Reactions of Binuclear Phosphatase Mimetics” Dalton Trans. 2012, 41, 1695–1708.]—Reproduced by permission of The Royal Society of Chemistry.

References

  1. Y. Gultneh, A.R. Khan, D. Blaise, S. Chaudhry, B. Ahvazi, B.B. Marvey, R.J. Butcher, J. Inorg. Biochem. 75, 7–18 (1999)

    Article  CAS  Google Scholar 

  2. E.-I. Ochiai, J. Chem. Educ. 65, 943–946 (1988)

    Article  CAS  Google Scholar 

  3. J. Riordan, B. Vallee (eds.), in Methods in Enzymology (Academic Press, United States, 1993). Print Book ISBN : 9780121821289

    Google Scholar 

  4. M.F. Summers, Coord. Chem. Rev. 86, 43–134 (1988)

    Article  CAS  Google Scholar 

  5. J. Weston, Chem. Rev. 105, 2151–2174 (2005). (Washington, DC, U.S.)

    Article  CAS  Google Scholar 

  6. E. Ghanem, F.M. Raushel, Toxicol. Appl. Pharmacol. 207, 459–470 (2005)

    Article  Google Scholar 

  7. P.J. O’Brien, D. Herschlag, Biochemistry 41, 3207–3225 (2002)

    Article  Google Scholar 

  8. E. Hough, L.K. Hansen, B. Birknes, K. Jynge, S. Hansen, A. Hordvik, C. Little, E. Dodson, Z. Derewenda, Nature 338, 357–360 (1989)

    Article  CAS  Google Scholar 

  9. C. Romier, R. Dominguez, A. Lahm, O. Dahl, D. Suck, Proteins: Struct., Funct., Bioinf. 32, 414–424 (1998)

    Article  CAS  Google Scholar 

  10. M.W. Crowder, J. Spencer, A.J. Vila, Acc. Chem. Res. 39, 721–728 (2006)

    Article  CAS  Google Scholar 

  11. N. Laraki, N. Franceschini, G.M. Rossolini, P. Santucci, C. Meunier, E. de Pauw, G. Amicosante, J.M. Frere, M. Galleni, Antimicrob. Agents Chemother. 43, 902–906 (1999)

    CAS  Google Scholar 

  12. J.A. Cricco, E.G. Orellano, R.M. Rasia, E.A. Ceccarelli, A.J. Vila, Coord. Chem. Rev. 192, 519–535 (1999)

    Article  Google Scholar 

  13. C. Oefner, A. Douangamath, A. D’Arcy, S. Hafeli, D. Mareque, A. Mac Sweeney, J. Padilla, S. Pierau, H. Schulz, M. Thormann, S. Wadman, G.E. Dale, J. Mol. Biol. 332, 13–21 (2003)

    Article  CAS  Google Scholar 

  14. M. Klinkenberg, C. Ling, Y.H. Chang, Arch. Biochem. Biophys. 347, 193–200 (1997)

    Article  CAS  Google Scholar 

  15. R.A. Bradshaw, E. Yi, Essays Biochem. 38, 65–78 (2002)

    CAS  Google Scholar 

  16. V.M. D’souza, R.C. Holz, Biochemistry 38, 11079–11085 (1999)

    Article  Google Scholar 

  17. E. Kimura, Y. Kodama, T. Koike, M. Shiro, J. Am. Chem. Soc. 117, 8304–8311 (1995)

    Article  CAS  Google Scholar 

  18. J.F. Fisher, S.O. Meroueh, S. Mobashery, J. Am. Chem. Soc. 105, 395–424 (2005). (Washington, DC, U.S.)

    CAS  Google Scholar 

  19. N. Mitić, S.J. Smith, A. Neves, L.W. Guddat, L.R. Gahan, G. Schenk, Chem. Rev. 106, 3338–3363 (2006). (Washington, DC, U.S.)

    Article  Google Scholar 

  20. N.V. Kaminskaia, B. Spingler, S.J. Lippard, J. Am. Chem. Soc. 123, 6555–6563 (2001)

    Article  CAS  Google Scholar 

  21. Z. Wang, W. Fast, S.J. Benkovic, J. Am. Chem. Soc. 120, 10788–10789 (1998)

    Article  CAS  Google Scholar 

  22. C. Damblon, M. Jensen, A. Ababou, I. Barsukov, C. Papamicael, C.J. Schofield, L. Olsen, R. Bauer, G.C. Roberts, J. Biol. Chem. 278, 29240–29251 (2003)

    Article  CAS  Google Scholar 

  23. T. Koike, M. Takamura, E. Kimura, J. Am. Chem. Soc. 116, 8443–8449 (1994)

    Article  CAS  Google Scholar 

  24. A. Tamilselvi, G. Mugesh, J. Biol. Inorg. Chem. 13, 1039–1053 (2008)

    Article  CAS  Google Scholar 

  25. M.J. Hawk, R.M. Breece, C.E. Hajdin, K.M. Bender, Z. Hu, A.L. Costello, B. Bennett, D.L. Tierney, M.W. Crowder, J. Am. Chem. Soc. 131, 10753–10762 (2009)

    Article  CAS  Google Scholar 

  26. L. Hemmingsen, C. Damblon, J. Antony, M. Jensen, H.W. Adolph, S. Wommer, G.C. Roberts, R. Bauer, J. Am. Chem. Soc. 123, 10329–10335 (2001)

    Article  CAS  Google Scholar 

  27. H. Carlsson, M. Haukka, E. Nordlander, Inorg. Chem. 43, 5681–5687 (2004)

    Article  CAS  Google Scholar 

  28. M. Jarenmark, E. Csapo, J. Singh, S. Wockel, E. Farkas, F. Meyer, M. Haukka, E. Nordlander, J. Chem. Soc., Dalton Trans. 39, 8183–8194 (2010)

    Article  CAS  Google Scholar 

  29. M. Jarenmark, S. Kappen, M. Haukka, E. Nordlander, Dalton Trans. (8), 993–996 (2008)

    Google Scholar 

  30. J.W. Chen, X.Y. Wang, Y.G. Zhu, J. Lin, X.L. Yang, Y.Z. Li, Y. Lu, Z.J. Guo, Inorg. Chem. 44, 3422–3430 (2005)

    Article  CAS  Google Scholar 

  31. F. Meyer, H. Pritzkow, Eur. J. Inorg. Chem. 12, 2346–2351 (2005)

    Google Scholar 

  32. G. Parkin, Chem. Rev. 104, 699–767 (2004). (Washington, DC, U.S.)

    Article  CAS  Google Scholar 

  33. R.R. Buchholz, M.E. Etienne, A. Dorgelo, R.E. Mirams, S.J. Smith, S.Y. Chow, L.R. Hanton, G.B. Jameson, G.Schenk, L. R. Gahan, Dalton Trans. 43, 6045–6054 (2008)

    Google Scholar 

  34. M. Umayal, G. Mugesh, Inorg. Chim. Acta 372, 353–361 (2011)

    Article  CAS  Google Scholar 

  35. K. Selmeczi, C. Michel, A. Milet, I. Gautier-Luneau, C. Philouze, J.-L. Pierre, D. Schnieders, A. Rompel and C. Belle, Chem.–Eur. J. 13, 9093–9106 (2007)

    Google Scholar 

  36. L.M. Berreau, Adv. Phys. Org. Chem. 41, 79–181 (2006)

    CAS  Google Scholar 

  37. A. Tamilselvi, M. Nethaji and G. Mugesh, Chem.–Eur. J. 12, 7797–7806 (2006)

    Google Scholar 

  38. B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, S. Dechert, Chem.–Eur. J. 11, 4349–4360 (2005)

    Google Scholar 

  39. B. Bauer-Siebenlist, S. Dechert, F. Meyer, Chem.–Eur. J. 11, 5343–5352 (2005)

    Google Scholar 

  40. L.R. Gahan, S.J. Smith, A. Neves, G. Schenk, Eur. J. Inorg. Chem. 19, 2745–2758 (2009)

    Article  Google Scholar 

  41. G. Ambrosi, M. Formica, V. Fusi, L. Giorgi, M. Micheloni, Coord. Chem. Rev. 252, 1121–1152 (2008)

    Article  CAS  Google Scholar 

  42. H. Sakiyama, R. Mochizuki, A. Sugawara, M. Sakamoto, Y. Nishida, M. Yamasaki, J. Chem. Soc., Dalton Trans. 6, 997–1000 (1999)

    Google Scholar 

  43. S.J. Lippard, C. He, J. Am. Chem. Soc. 122, 184–185 (2000)

    Article  Google Scholar 

  44. F. Meyer, P. Rutsch, Chem. Commun. 9, 1037–1038 (1998)

    Google Scholar 

  45. C. Bazzicalupi, A. Bencini, E. Berni, A. Bianchi, P. Fornasari, C. Giorgi, B. Valtancoli, Inorg. Chem. 43, 6255–6265 (2004)

    Article  CAS  Google Scholar 

  46. C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, C. Giorgi, P. Paoletti, B. Valtancoli, D. Zanchi, Inorg. Chem. 36, 2784–2790 (1997)

    Article  CAS  Google Scholar 

  47. C. Vichard, T.A. Kaden, Inorg. Chim. Acta 337, 173–180 (2002)

    Article  CAS  Google Scholar 

  48. B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, J.A. Cuesta-Seijo, R. Herbst-Irmer, H. Pritzkow, Inorg. Chem. 43, 4189–4202 (2004)

    Article  CAS  Google Scholar 

  49. C. Bazzicalupi, A. Bencini, E. Berni, A. Bianchi, V. Fedi, V. Fusi, C. Giorgi, P. Paolettti, B. Valtancoli, Inorg. Chem. 38, 4115–4122 (1999)

    Article  CAS  Google Scholar 

  50. M. Livieri, F. Mancin, U. Tonellato, J. Chin, J. Chem. Soc. Chem. Commun. 126, 2862–2863 (2004)

    Google Scholar 

  51. J. Xia, Y.B. Shi, Y. Zhang, Q. Miao, W.X. Tang, Inorg. Chem. 42, 70–77 (2003)

    Article  CAS  Google Scholar 

  52. J. Burgess, Metal ions in solution (Halsted, Chichester, 1978)

    Google Scholar 

  53. N.V. Kaminskaia, C. He, S.J. Lippard, Inorg. Chem. 39, 3365–3373 (2000)

    Article  CAS  Google Scholar 

  54. K.E. Dalle, Honours Thesis, 2009

    Google Scholar 

  55. S. Petricek, A. Demsar, Polyhedron 29, 3329–3334 (2010)

    Article  CAS  Google Scholar 

  56. A. Crochet, K.M. Fromm, Z. Anorg, Allg. Chem. 636, 1484–1496 (2010)

    Article  CAS  Google Scholar 

  57. M.N. Burnett and C.K. Johnson, ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, 1996

    Google Scholar 

  58. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978)

    Google Scholar 

  59. M. Monroe, Molecular Weight Calculator (2004), http://omics.pnl.gov/software/MWCalculator.php. Accessed 20 Feb 2013

  60. M.C. Mitchell, R.J. Taylor, T.P. Kee, Polyhedron 17, 433–442 (1998)

    Article  CAS  Google Scholar 

  61. R.K. Harris, B.E. Mann, NMR and the Periodic Table, (Academic, London, New York, 1978)

    Google Scholar 

  62. N.H. Williams, A.M. Lebuis, J. Chin, J. Am. Chem. Soc. 121, 3341–3348 (1999)

    Article  CAS  Google Scholar 

  63. M. Cohn, A. Hu, Proc. Natl. Acad. Sci. USA 75, 200–203 (1978)

    Article  CAS  Google Scholar 

  64. D.E.C. Corbridge, Phosphorus: an Outline of its Chemistry, Biochemistry, and Technology, (Elsevier, Amsterdam, New York, 1990)

    Google Scholar 

  65. J.B. Domingos, E. Longhinotti, T.A.S. Brandao, C.A. Bunton, L.S. Santos, M.N. Eberlin, F. Nome, J. Org. Chem. 69, 6024–6033 (2004)

    Article  CAS  Google Scholar 

  66. J.C. Mareque Rivas, R.T.M. de Rosales, S. Parsons, Dalton Trans. 23, 4385–4386 (2003)

    Google Scholar 

  67. I.H. Segel, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley-Interscience, New York, 1975)

    Google Scholar 

  68. Y. Simon-Manso, J. Phys. Chem. A 109, 2006–2011 (2005)

    Article  CAS  Google Scholar 

  69. R.A. Peralta, A.J. Bortoluzzi, B. de Souza, R. Jovito, F.R. Xavier, R.A.A. Couto, A. Casellato, F. Nome, A. Dick, L.R. Gahan, G. Schenk, G.R. Hanson, F.C.S. de Paula, E.C. Pereira-Maia, SdP. Machado, P.C. Severino, C. Pich, T. Bortolotto, H. Terenzi, E.E. Castellano, A. Neves, M.J. Riley, Inorg. Chem. 49, 11421–11438 (2010)

    Google Scholar 

  70. C.J. Jackson, P.D. Carr, J.W. Liu, S.J. Watt, J.L. Beck, D.L. Ollis, J. Mol. Biol. 367, 1047–1062 (2007)

    Article  CAS  Google Scholar 

  71. F. Ely, J.L. Foo, C.J. Jackson, L.R. Gahan, D. Ollis, G. Schenk, Curr. Top. Biomed. Res. 9, 63–78 (2007)

    CAS  Google Scholar 

  72. M. Young, D. Wahnon, R. Hynes, J. Chin, J. Am. Chem. Soc. 117, 9441–9447 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Josefine Daumann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daumann, L.J. (2014). Structural and Mechanistic Studies of Zn(II) Complexes as Phosphoesterase Models. In: Spectroscopic and Mechanistic Studies of Dinuclear Metallohydrolases and Their Biomimetic Complexes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06629-5_4

Download citation

Publish with us

Policies and ethics