Gamma-Ray Bursts in Circumstellar Shells

  • Robert Allan MeslerIII
Part of the Springer Theses book series (Springer Theses)


It is now generally accepted that long-duration gamma-ray bursts (GRBs) are due to the collapse of massive rotating stars. The precise collapse process itself, however, is not yet fully understood. Strong winds, outbursts, and intense ionizing UV radiation from single stars or strongly interacting binaries are expected to destroy the molecular cloud cores that give birth to them and create highly complex circumburst environments for the explosion. Such environments might imprint features on GRB light curves that uniquely identify the nature of the progenitor and its collapse. We have performed numerical simulations of realistic environments for a variety of long-duration GRB progenitors with ZEUS-MP, and have developed an analytical method for calculating GRB light curves in these profiles. Though a full, three-dimensional, relativistic hydrodynamical computational model is required to precisely describe the light curve from a GRB in complex environments, our method can provide a qualitative understanding of these phenomena. We find that, in the context of the standard afterglow model, massive shells around GRBs produce strong signatures in their light curves, and that this can distinguish them from those occurring in uniform media or steady winds. These features can constrain the mass of the shell and the properties of the wind before and after the ejection. Moreover, the interaction of the GRB with the circumburst shell is seen to produce features that are consistent with observed flares that are often attributed to delayed energy injection by the central engine. Our algorithm for computing light curves is also applicable to GRBs in a variety of environments such as those in high-redshift cosmological halos or protogalaxies, both of which will soon be targets of future surveys such as JANUS or Lobster.


Light Curve Light Curf Reverse Shock Fast Wind Dense Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. T. Abel, J.H. Wise, G.L. Bryan, ApJ 659, L87 (2007)ADSCrossRefGoogle Scholar
  2. M.A. Alvarez, V. Bromm, P.R. Shapiro, ApJ 639, 621 (2006)ADSCrossRefGoogle Scholar
  3. P. Anninos, Y. Zhang, T. Abel, M.L. Norman, New Astron. 2, 209 (1997)ADSCrossRefGoogle Scholar
  4. M.V. Barkov, S.S. Komissarov, MNRAS 415, 944 (2011)ADSCrossRefGoogle Scholar
  5. E. Berger, R. Sari, D.A. Frail, S.R. Kulkarni, F. Bertoldi, A.B. Peck, K.M. Menten, D.S. Shepherd, G.H. Moriarty-Schieven, G. Pooley, J.S. Bloom, A. Diercks, T.J. Galama, K. Hurley, ApJ 545, 56 (2000)ADSCrossRefGoogle Scholar
  6. D.N. Burrows, P.W.A. Roming, D.B. Fox, T.L. Herter, A. Falcone, S. Bilén, J.A. Nousek, J.A. Kennea, in Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray. San Diego. Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7732. (Society of Photo-Optical Instrumentation Engineers (SPIE), San Diego, CA, 2010)Google Scholar
  7. J. Castor, R. McCray, R. Weaver, ApJ 200, L107 (1975)ADSCrossRefGoogle Scholar
  8. P.A. Curran, R.L.C. Starling, A.J. van der Horst, R.A.M.J. Wijers, M. de Pasquale, M. Page, Adv. Space Res. 47, 1362 (2011)ADSCrossRefGoogle Scholar
  9. Z.G. Dai, T. Lu, ApJ 565, L87 (2002)ADSCrossRefGoogle Scholar
  10. A. Dalgarno, R.A. McCray, ARA&A 10, 375 (1972)ADSCrossRefGoogle Scholar
  11. A.D. Falcone, D.N. Burrows, D. Lazzati, S. Campana, S. Kobayashi, B. Zhang, P. Mészáros, K.L. Page, J.A. Kennea, P. Romano, C. Pagani, L. Angelini, A.P. Beardmore, M. Capalbi, G. Chincarini, G. Cusumano, P. Giommi, M.R. Goad, O. Godet, D. Grupe, J.E. Hill, V. La Parola, V. Mangano, A. Moretti, J.A. Nousek, P.T. O’Brien, J.P. Osborne, M. Perri, G. Tagliaferri, A.A. Wells, N. Gehrels, ApJ 641, 1010 (2006)ADSCrossRefGoogle Scholar
  12. E.E. Fenimore, C.D. Madras, S. Nayakshin, ApJ 473, 998 (1996)ADSCrossRefGoogle Scholar
  13. R. Filgas, J. Greiner, P. Schady, T. Krühler, A.C. Updike, S. Klose, M. Nardini, D.A. Kann, A. Rossi, V. Sudilovsky, P.M.J. Afonso, C. Clemens, J. Elliott, A. Nicuesa Guelbenzu, F. Olivares E, A. Rau, A&A 535, A57 (2011)Google Scholar
  14. C.L. Fryer, S.E. Woosley, ApJ 502, L9 (1998)ADSCrossRefGoogle Scholar
  15. C.L. Fryer, S.E. Woosley, D.H. Hartmann, ApJ 526, 152 (1999)ADSCrossRefGoogle Scholar
  16. C.L. Fryer, G. Rockefeller, P.A. Young, ApJ 647, 1269 (2006)ADSCrossRefGoogle Scholar
  17. C.L. Fryer, P.A. Mazzali, J. Prochaska, E. Cappellaro, A. Panaitescu, E. Berger, M. van Putten, E.P.J. van den Heuvel, P. Young, A. Hungerford, G. Rockefeller, S.-C. Yoon, P. Podsiadlowski, K. Nomoto, R. Chevalier, B. Schmidt, S. Kulkarni, PASP 119, 1211 (2007)ADSCrossRefGoogle Scholar
  18. O. Godet, K.L. Page, J.P. Osborne, P.T. O’Brien, D.N. Burrows, J.E. Hill, B. Zhang, A.P. Beardmore, L. Angelini, M. Capalbi, J. Cummings, N. Gehrels, M.R. Goad, J.A. Kennea, V. Mangano, A. Moretti, D.C. Morris, A&A 452, 819 (2006)ADSCrossRefGoogle Scholar
  19. Y.F. Huang, Z.G. Dai, T. Lu, MNRAS 309, 513 (1999)ADSCrossRefGoogle Scholar
  20. Y.F. Huang, L.J. Gou, Z.G. Dai, T. Lu, ApJ 543, 90 (2000)ADSCrossRefGoogle Scholar
  21. K.Y. Huang, Y. Urata, Y.H. Tung, H.M. Lin, L.P. Xin, M. Yoshida, W. Zheng, C. Akerlof, S.Y. Wang, W.H. Ip, M.J. Lehner, F.B. Bianco, N. Kawai, D. Kuroda, S.L. Marshall, M.E. Schwamb, Y. Qiu, J.H. Wang, C.Y. Wen, J. Wei, K. Yanagisawa, Z.W. Zhang, ApJ 748, 44 (2012)ADSCrossRefGoogle Scholar
  22. T. Kitayama, N. Yoshida, H. Susa, M. Umemura, ApJ 613, 631 (2004)ADSCrossRefGoogle Scholar
  23. P. Mészáros, ARA&A 40, 137 (2002)CrossRefGoogle Scholar
  24. P. Mimica, D. Giannios, MNRAS 418, 583 (2011)ADSCrossRefGoogle Scholar
  25. E. Nakar, J. Granot, MNRAS 380, 1744 (2007)ADSCrossRefGoogle Scholar
  26. M. Nardini, J. Greiner, T. Krühler, R. Filgas, S. Klose, P. Afonso, C. Clemens, A.N. Guelbenzu, F. Olivares E, A. Rau, A. Rossi, A. Updike, A. Küpcü Yoldaş, A. Yoldaş, D. Burlon, J. Elliott, D.A. Kann, A&A 531, A39 (2011)Google Scholar
  27. A. Panaitescu, P. Kumar, ApJ 543, 66 (2000)ADSCrossRefGoogle Scholar
  28. A. Panaitescu, P. Mészáros, ApJ 544, L17 (2000)ADSCrossRefGoogle Scholar
  29. A. Pe’er, ApJ 752, L8 (2012)Google Scholar
  30. P.A. Price, E. Berger, D.E. Reichart, S.R. Kulkarni, S.A. Yost, R. Subrahmanyan, R.M. Wark, M.H. Wieringa, D.A. Frail, J. Bailey, B. Boyle, E. Corbett, K. Gunn, S.D. Ryder, N. Seymour, K. Koviak, P. McCarthy, M. Phillips, T.S. Axelrod, J.S. Bloom, S.G. Djorgovski, D.W. Fox, T.J. Galama, F.A. Harrison, K. Hurley, R. Sari, B.P. Schmidt, M.J.I. Brown, T. Cline, F. Frontera, C. Guidorzi, E. Montanari, ApJ 572, L51 (2002)ADSCrossRefGoogle Scholar
  31. E. Ramirez-Ruiz, A. Merloni, M.J. Rees, MNRAS 324, 1147 (2001)ADSCrossRefGoogle Scholar
  32. E. Ramirez-Ruiz, G. García-Segura, J.D. Salmonson, B. Pérez-Rendón, ApJ 631, 435 (2005)ADSCrossRefGoogle Scholar
  33. M. Ricotti, N.Y. Gnedin, J.M. Shull, ApJ 560, 580 (2001)ADSCrossRefGoogle Scholar
  34. M. Ricotti, N.Y. Gnedin, J.M. Shull, ApJ 575, 49 (2002)ADSCrossRefGoogle Scholar
  35. M. Ricotti, J.P. Ostriker, N.Y. Gnedin, MNRAS 357, 207 (2005)ADSCrossRefGoogle Scholar
  36. P. Roming, in 37th COSPAR Scientific Assembly, Montreal. COSPAR, Plenary Meeting, Montreal, Canada, vol. 37, p. 2645\(-\,+\) (2008)Google Scholar
  37. G. Rybicki, A. Lightman, Radiative Processes in Astrophysics (Wiley-Interscience, New York, 1979)Google Scholar
  38. R. Sari, T. Piran, R. Narayan, ApJ 497, L17 (1998)ADSCrossRefGoogle Scholar
  39. J.M. Shull, M.E. van Steenberg, ApJ 298, 268 (1985)ADSCrossRefGoogle Scholar
  40. C.C. Thöne, A. de Ugarte Postigo, C.L. Fryer, K.L. Page, J. Gorosabel, M.A. Aloy, D.A. Perley, C. Kouveliotou, H.T. Janka, P. Mimica, J.L. Racusin, H. Krimm, J. Cummings, S.R. Oates, S.T. Holland, M.H. Siegel, M. de Pasquale, E. Sonbas, M. Im, W.-K. Park, D.A. Kann, S. Guziy, L.H. García, A. Llorente, K. Bundy, C. Choi, H. Jeong, H. Korhonen, P. Kubànek, J. Lim, A. Moskvitin, T. Muñoz-Darias, S. Pak, I. Parrish, Nature 480, 72 (2011)ADSCrossRefGoogle Scholar
  41. R. Weaver, R. McCray, J. Castor, P. Shapiro, R. Moore, ApJ 218, 377 (1977)ADSCrossRefGoogle Scholar
  42. D. Whalen, M.L. Norman, ApJS 162, 281 (2006)ADSCrossRefGoogle Scholar
  43. D. Whalen, M.L. Norman, ApJ 673, 664 (2008a)ADSCrossRefGoogle Scholar
  44. D.J. Whalen, M.L. Norman, ApJ 672, 287 (2008b)ADSCrossRefGoogle Scholar
  45. D. Whalen, T. Abel, M.L. Norman, ApJ 610, 14 (2004)ADSCrossRefGoogle Scholar
  46. D. Whalen, J.X. Prochaska, A. Heger, J. Tumlinson, ApJ 682, 1114 (2008)ADSCrossRefGoogle Scholar
  47. R.A.M.J. Wijers, T.J. Galama, ApJ 523, 177 (1999)ADSCrossRefGoogle Scholar
  48. J.H. Wise, T. Abel, ApJ 685, 40 (2008)ADSCrossRefGoogle Scholar
  49. J.H. Wise, M.J. Turk, M.L. Norman, T. Abel, ApJ 745, 50 (2012)ADSCrossRefGoogle Scholar
  50. S.E. Woosley, ApJ 405, 273 (1993)ADSCrossRefGoogle Scholar
  51. S.E. Woosley, ApJ 719, L204 (2010)ADSCrossRefGoogle Scholar
  52. S.E. Woosley, J.S. Bloom, ARA&A 44, 507 (2006)ADSCrossRefGoogle Scholar
  53. S.A. Yost, F.A. Harrison, R. Sari, D.A. Frail, ApJ 597, 459 (2003)ADSCrossRefGoogle Scholar
  54. W. Zhang, C.L. Fryer, ApJ 550, 357 (2001)ADSCrossRefGoogle Scholar
  55. H. Ziaeepour, S.T. Holland, P.T. Boyd, K. Page, S. Oates, C.B. Markwardt, P. Mészáros, N. Gehrels, F.E. Marshall, J. Cummings, M. Goad, MNRAS 385, 453 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Robert Allan MeslerIII
    • 1
  1. 1.Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations