Skip to main content

Hysteresis Modeling and Control

  • Chapter
  • First Online:

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter focuses on the fundamentals of hysteresis, including modeling and compensation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adriaens HJMTA, de Koning WL, Banning R (2000) Modeling piezoelectric actuators. In: IEEE/ASME transactions on mechatronics, vol 5, no 4, pp 331–341, Dec 2000

    Google Scholar 

  • Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83(7–9):337–437

    Google Scholar 

  • Banks HT, Kurdila AJ, Webb G (1997) Identification of hysteretic confluence operators representing smart actuators: convergent approximations. North Carolina State University CRSC, Tech. Rep., April 1997

    Google Scholar 

  • Barrett RC, Quate CF (1991) Optical scan-correction system applied to atomic force microscopy. Rev Sci Instrum 62(6):1393–1399

    Article  Google Scholar 

  • Bertotti G, Mayergoyz I (2006a) The science of hysteresis, vol 1. Elsevier, New York

    Google Scholar 

  • Bertotti G, Mayergoyz I (2006b) The science of hysteresis, vol 2. Elsevier, New York

    Google Scholar 

  • Bertotti G, Mayergoyz I (2006c) The science of hysteresis, vol 3. Elsevier, New York

    Google Scholar 

  • Brokate M, Sprekels J (1996) Hysteresis and phase transitions. Springer, New York

    Book  MATH  Google Scholar 

  • Cao H, Evans AG (1993) Nonlinear deformation of ferroelectric ceramics. J Amer Ceram Soc 76:890–896

    Article  Google Scholar 

  • Coleman BD, Hodgdon ML (1986) A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials. Int J Engng Sci 24(6):897–919

    Article  MATH  Google Scholar 

  • Croft D, Shed G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. the ASME. J Dyn Syst Meas Contr 123:35–43

    Google Scholar 

  • Cross R (1988) Unemployment, hysteresis, and the natural rate hypothesis. Basil Blackwell Ltd., New York

    Google Scholar 

  • Galinaitis WS, Rogers RC (1998) “Control of a hysteretic actuator using inverse hysteresis compensation”, in SPIE Conf. Math Control Smart Struct 3323:267–277

    Google Scholar 

  • Ge P, Jouaneh M (1995) Modeling hysteresis in piezoceramic actuators. Precis Eng 17(3):211–221

    Article  Google Scholar 

  • Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Cont Syst Mag 17(3):69–79

    Google Scholar 

  • Gorbet RB, Wang DWL, Morris KA (1998) Preisach model identification of a two-wire sma actuator. In: Proceedings IEEE International Conference on Robotics and Automation, pp 2161–2167

    Google Scholar 

  • Hu M, Du H, Ling S-F, Zhou Z, Li Y (2004) Motion control of an electrostrictive actuator. Mechatronics 14(2):153–161

    Article  Google Scholar 

  • Janaideh MA, Rkaheja S, Su C-Y (2008) Compensation of hysteresis nonlinearties in smart actuators. In: ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp SMASIS2008–486

    Google Scholar 

  • Janaideh MA, Su C-Y, Rakheja S (2008) Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Mater Struct 17:035026 (11pp)

    Google Scholar 

  • Jiles DC, Atherton DL (1986) Theory of ferromagnetic hysteresis. J Magn Magn Mater 61:48–60

    Article  Google Scholar 

  • Kenton BJ, Fleming AJ, Leang KK (2011) A compact ultra-fast vertical nanopositioner for improving SPM scan speed. Rev Sci Instr 82:123703

    Article  Google Scholar 

  • Kenton BJ, Leang KK (2012) Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Trans Mechatron 17(2):356–369

    Article  Google Scholar 

  • Kuhnen K (2003) Modeling, identification and compensation of complex hysteretic nonlinearities: a modified prandtl-ishlinskii approach. Eur J Control 9(4):407–418

    Article  Google Scholar 

  • Leang KK (2004) Iterative learning control of hysteresis in piezo-based nanopositioners: theory and application in atomic force microscopes, Ph.D. dissertation, Mechanical Engineering

    Google Scholar 

  • Leang KK, Devasia S (2006) Design of hysteresis-compensating iterative learning control for piezo positioners: application to atomic force microscopes. Mechatronics 16(3–4):141–158

    Article  Google Scholar 

  • Leang KK, Fleming AJ (2009) High-speed serial-kinematic AFM scanner: design and drive considerations. Asian J Control Spec issue Adv Control Meth Scan Probe Microsc Res Tech 11(2):144–153

    Google Scholar 

  • Majima S, Kodama K, Hasegawa T (2001) Modeling of shape memory alloy actuator and tracking control system with the model. IEEE Trans Cont Syst Tech 9(1):54–59

    Article  Google Scholar 

  • Mayergoyz ID (1991) Mathematical models of hysteresis. Springer, New York

    Book  MATH  Google Scholar 

  • Preisach F (1935) Uber die magnetische nachwirkung. Zeitschrift fur Physik 94:277–302

    Article  Google Scholar 

  • Shan Y, Leang KK (2012) Dual-stage repetitive control with Prandtl-Ishlinskii hysteresis inversion for piezo-based nanopositioning. Mechatronics 22:271–281

    Article  Google Scholar 

  • Tan X, Venkataraman R, Krishnaprasad PS (2001) “Control of hysteresis: theory and experimental results”, in SPIE Modeling. Signal Process Control Smart Struct 4326:101–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Fleming .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fleming, A.J., Leang, K.K. (2014). Hysteresis Modeling and Control. In: Design, Modeling and Control of Nanopositioning Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-06617-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06617-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06616-5

  • Online ISBN: 978-3-319-06617-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics