Advertisement

Building for the Future: Architectures for the Next Generation of Intelligent Robots

  • Nick HawesEmail author
Chapter
Part of the Cognitive Systems Monographs book series (COSMOS, volume 22)

Abstract

In this article I explore two ideas. The first is that the idea of architectures for intelligent systems is ripe for exploitation given the current state of component technologies and available software. The second idea is that in order to encourage progress in architecture research, we must concentrate on research methodologies that prevent us from continually reinventing and reimplementing existing work. The two ideas I propose for this are building software toolkits that provide useful architectures for the way researchers currently develop systems, and focusing on architectural design patterns, rather than whole architectures.

Keywords

Intelligent System Design Pattern Robot System Intelligent Robot Robot Operating System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An integrated theory of the mind. Psychol Rev 111(4):1036–1060CrossRefGoogle Scholar
  2. Benjamin DP, Lyons D, Lonsdale D (2006) Embodying a cognitive model in a mobile robot 6384(1):638,407. doi: 10.1117/12.686163
  3. Bonasso RP, Firby RJ, Gat E, Kortenkamp D, Miller DP, Slack MG (1997) Experiences with an architecture for intelligent, reactive agents. J Exp Theor Artif Intell 9(2–3):237–256CrossRefGoogle Scholar
  4. Brooks RA (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom 2:14–23CrossRefMathSciNetGoogle Scholar
  5. Bryson JJ (2003) The behavior-oriented design of modular agent intelligence. In: Kowalszyk R, Müller JP, Tianfield H, Unland R (eds) Agent technologies, infrastructures, tools, and applications for e-services. Springer, Berlin, pp 61–76CrossRefGoogle Scholar
  6. Bryson JJ, Stein LA (2001) Architectures and idioms: making progress in agent design. In: Castelfranchi C, Lespérance Y (eds) The seventh international workshop on agent theories, architectures, and languages (ATAL2000), Springer, pp 73–88Google Scholar
  7. Chappell J, Sloman A (2007) Natural and artificial meta-configured altricial information-processing systems. Int J Unconv Comput 3(3):211–239Google Scholar
  8. Choi D, Könik T, Nejati N, Park C, Langley P (2007) A believable agent for first-person shooter games. In: Proceedings of the third artificial intelligence and interactive digital entertainment conference, pp 71–73Google Scholar
  9. Coradeschi S, Saffiotti A (2003) An introduction to the anchoring problem. Robot Auton Syst 43(2–3):85–96. doi: 10.1016/S0921-8890(03)00021-6, perceptual Anchoring: Anchoring Symbols to Sensor Data in Single and Multiple Robot Systems CrossRefGoogle Scholar
  10. Dittes B, Goerick C (2011) A language for formal design of embedded intelligence research systems. Robot Auton Syst 59(3–4):181–193. doi: 10.1016/j.robot.2011.01.001 CrossRefGoogle Scholar
  11. Edelkamp S, Kissmann P (2004) PDDL 2.1: the language for the classical part of IPC-4. In: Proceedings of the international planning competition. international conference on automated planning and scheduling. Whistler, CanadaGoogle Scholar
  12. EUROP (2009) The strategic research agenda for robotics In Europe. http://www.robotics-platform.eu/sra
  13. Firby RJ (1987) An investigation into reactive planning in complex domains. In: Proceedings of the Sixth national conference on artificial intelligence, pp 202–206Google Scholar
  14. Fitzpatrick P, Metta G, Natale L (2008) Towards long-lived robot genes. Robot Auton Syst 56(1): 29–45. http://dx.doi.org/10.1016/j.robot.2007.09.014
  15. Folkesson J, Jensfelt P, Christensen HI (2007) The M-space feature representation for SLAM. IEEE Trans Robot 23(5):1024–1035CrossRefGoogle Scholar
  16. Fritsch J, Kleinehagenbrock M, Lang S, Plötz T, Fink GA, Sagerer G (2003) Multi-modal anchoring for human-robot interaction. Robot Auton Syst 43(2–3):133–147. doi: 10.1016/S0921-8890(02)00355-X. In: Perceptual anchoring: anchoring symbols to sensor data in single and multiple robot systems
  17. Gat E (1998) Three-layer architectures. Artificial intelligence and mobile robots: case studies of successful robot systems. MIT Press, Cambridge, pp 195–210Google Scholar
  18. Hawes N (2004) Anytime deliberation for computer game agents. PhD thesis, School of Computer Science, University of BirminghamGoogle Scholar
  19. Hawes N, Wyatt J (2010) Engineering intelligent information-processing systems with CAST. Adv Eng Inf 24(1):27–39. http://dx.doi.org/10.1016/j.aei.2009.08.010
  20. Hawes N, Sloman A, Wyatt J (2007a) Towards an empirical exploration of design space. In: Kaminka GA, Burghart CR (eds) Evaluating architectures for intelligence: papers from the 2007 AAAI workshop. AAAI Press, Vancouver, pp 31–35Google Scholar
  21. Hawes N, Sloman A, Wyatt J, Zillich M, Jacobsson H, Kruijff GJ, Brenner M, Berginc G, Skočaj D (2007b) Towards an integrated robot with multiple cognitive functions. In: Holte RC, Howe A (eds) Proceedings of the twenty-second AAAI conference on artificial intelligence (AAAI 2008). AAAI Press, Vancouver, Canada, pp 1548–1553Google Scholar
  22. Hawes N, Brenner M, Sjöö K (2009) Planning as an architectural control mechanism. In: HRI ’09: Proceedings of the 4th ACM/IEEE international conference on Human robot interaction, ACM, New York, NY, USA, pp 229–230, http://doi.acm.org/10.1145/1514095.1514150
  23. Hawes N, Zillich M, Jensfelt P (2010) Lessons learnt from scenario-based integration. In: Christensen HI, Kruijff GJM, Wyatt JL (eds) Cognitive systems, cognitive systems monographs, vol 8. Springer, Berlin, pp 423–438Google Scholar
  24. Hawes N, Hanheide M, Hargreaves J, Page B, Zender H, Jensfelt P (2011) Home alone: Autonomous extension and correction of spatial representations. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘11)Google Scholar
  25. Heintz F, Kvarnström J, Doherty P (2009) A stream-based hierarchical anchoring framework. In: Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems, IEEE Press, Piscataway, NJ, USA, IROS’09, pp 5254–5260Google Scholar
  26. Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vis Res 40(10–12):1489–1506CrossRefGoogle Scholar
  27. Kuipers B (1988) Navigation and mapping in large-scale space. AI Mag 9:25–43Google Scholar
  28. Laird JE, Newell A, Rosenbloom PS (1987) Soar: an architecture for general intelligence. Artif Intell 33(3):1–64CrossRefGoogle Scholar
  29. Langley P, Choi D (2006) A unified cognitive architecture for physical agents. In: Proceedings of the twenty-first national conference on artificial intelligenceGoogle Scholar
  30. Langley P, Laird JE, Rogers S (2008) Cognitive Architectures: Research Issues and Challenges. Cognit Syst Res 10(2):141–160. doi: 10.1016/j.cogsys.2006.07.004
  31. Malcolm C (1997) A hybrid behavioural/knowledge-based approach to robotic assembly. Evolutionary robotics: from intelligent robots to artificial life (ER’97). AAI Books, Tokyo, pp 221–256Google Scholar
  32. Nilsson NJ (1994) Teleo-reactive programs for agent control. J Artif Intell Res 1:139–158Google Scholar
  33. Pronobis A, Sjöö K, Aydemir A, Bishop AN, Jensfelt P (2009) A framework for robust cognitive spatial mapping. In: 10th international conference on advanced robotics (ICAR 2009)Google Scholar
  34. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) ROS: an open-source robot operating system. In: ICRA workshop on open source softwareGoogle Scholar
  35. Scheutz M, Schermerhorn P (2009) Affective goal and task selection for social robots. In: Casacuberta D, Vallverdú J (eds) The handbook of research on synthetic emotions and sociable robotics, Information Science ReferenceGoogle Scholar
  36. Sjöö K, Zender H, Jensfelt P, Kruijff GJM, Pronobis A, Hawes N, Brenner M (2010) The explorer system. In: Christensen HI, Kruijff GJM, Wyatt JL (eds) Cognitive systems, cognitive systems monographs, vol 8. Springer, Berlin, pp 395–421Google Scholar
  37. Sloman A (1994) Explorations in design space. In: Cohn A (ed) Proceedings 11th European conference on AI, Amsterdam, August 1994. Wiley, Chichester, pp 578–582Google Scholar
  38. Sloman A (1998) The “semantics” of evolution: trajectories and trade-offs in design space and niche space. In: Coelho H (ed) Progress in artificial intelligence, 6th Iberoamerican conference on AI (IBERAMIA). Springer, Lecture Notes in artificial intelligence, Lisbon, pp 27–38Google Scholar
  39. Sloman A (1999a) Beyond shallow models of emotion. In: Andre E (ed) Behaviour planning for life-like avatars, Sitges, Spain, pp 35–42, Proceedings I3 spring days workshop March 9th–10th 1999Google Scholar
  40. Sloman A (1999b) What sort of architecture is required for a human-like agent? In: Wooldridge M, Rao A (eds) Foundations of rational agency. Kluwer Academic, Dordrecht, pp 35–52CrossRefGoogle Scholar
  41. Sloman A (2003) The cognition and affect project: architectures, architecture-schemas. School of Computer Science, University of Birmingham, And The New Science of Mind (Tech. rep)Google Scholar
  42. Sun R (2006) The CLARION cognitive architecture: extending cognitive modeling to social simulation. In: Sun R (ed) Cognition and multi-agent interaction. Cambridge University Press, New York, pp 79–99Google Scholar
  43. Talamadupula K, Benton J, Schermerhorn P, Kambhampati S, Scheutz M (2010) Integrating a closed world planner with an open world robot: a case study. In: AAAI conference on artificial intelligenceGoogle Scholar
  44. Thrun S, Burgard W, Fox D (2005) Probabilistic Robotics. MIT Press, CambridgeGoogle Scholar
  45. Tsotsos JK, Culhane SM, Winky WYK, Lai Y, Davis N, Nuflo F (1995) Modeling visual attention via selective tuning. Artif Intell 78(1–2):507–545. doi: 10.1016/0004-3702(95)00025-9
  46. Vernon D, Metta G, Sandini G (2007) A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE Trans Evol Comput 11(2):151–180CrossRefGoogle Scholar
  47. Wrede S (2008) An information-driven architecture for cognitive systems research. PhD thesis, Bielefeld UniversityGoogle Scholar
  48. Wright I, Sloman A, Beaudoin L (1996) Towards a design-based analysis of emotional episodes. Philos Psychiatry Psychol 3(2):101–126 (repr. in Chrisley RL (ed) (2000) Artificial intelligence: critical concepts in cognitive science, vol IV. Routledge, London)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations