Electrochemical Elaboration of Nano Powders Based on Magnesium and Lithium for Solid Hydrogen Storage

  • M. SahliEmail author
  • N. Bellel
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)


Solid hydrogen storage in a significant amount at ambient pressure and temperature in a volume and weight acceptable for embedded applications consists of developing porous nanomaterials or nanocomposites where the processes of adsorption and absorption can be combined. Our work is based in particular on the electrochemical preparation process of magnesium-based nanocomposites on a metallic cathode.

For this, a certain number of parameters were studied: the nature of the electrolyte, the concentrations used, the nature of the cathode, the current density, and the electrolysis time. For the characterization of the obtained powders, successive tests were performed such as the X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy.


Magnesium Alloy Hydrogen Desorption Lithium Hydroxide MgCl2 6H2O Hydride Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jinyang Z, Xianxin L, Ping X, Pengfei L, Yongzhi Z, Jian Y (2012) Development of high pressure gaseous hydrogen storage technologies. Int J Hydrogen Energy 37:1048–1057CrossRefGoogle Scholar
  2. 2.
    Patricia K Réservoirs haute pression en composites. Techniques de l’ingénieur, AM 5 530Google Scholar
  3. 3.
    Jean G Liquéfaction de l’hydrogène. Technique de l’ingénieur, J3603Google Scholar
  4. 4.
    Christophe B Hydrogène. Technique de l’ingénieur, J6368Google Scholar
  5. 5.
    Ross DK (2006) Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80:1084 − 1089CrossRefGoogle Scholar
  6. 6.
    Baptiste D (2012) Couplage d’un réservoir d’hydrure de magnésium et d’une source externe de chaleur, Université de Grenoble, Thèse doctorat soutenue le 21 juin 2012Google Scholar
  7. 7.
    Sandra K, Zeljka R, Nikola N, Bojana PM, Zoran J, Zvezdana B, Jasmina GN, Ljiljana M (2011) Hydrogen storage properties of MgH2 mechanically milled with α and β SiC. Int J hydrogen energy 36:549–554CrossRefGoogle Scholar
  8. 8.
    Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32:1121 − 1140CrossRefGoogle Scholar
  9. 9.
    Tong L, Chenggong Q, Mu Z, Yurong C, Hailong S, Xingguo L (2012) Synthesis and hydrogen storage properties of Mg-La-Al nanoparticles. J Power Sources 219:100–105CrossRefGoogle Scholar
  10. 10.
    Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353 − 358CrossRefADSGoogle Scholar
  11. 11.
    Jianxin Z, Xiaoqin Z, Yanjun Y, Xi C, Hao G, Si Z, Wenjiang D (2012) Study on the hydrogen storage properties of core-shell structured Mg-RE (RE [Nd, Gd, Er) nano-composites synthesized through arc plasma method. Int J Hydrogen Energy 36:1–10Google Scholar
  12. 12.
    Cheng FY, Tao ZL, Liang J, Chen J (2012) Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem Commun 48:7334 − 7343CrossRefGoogle Scholar
  13. 13.
    Knotek V, Vojtech D (2013) Electrochemical hydriding of Mg-Ni-Mm (Mm = mischmetal) alloys as an effective method for hydrogen storage. Int J Hydrogen Energy xxx:1–11Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Physics Energy Laboratory, Physics DepartmentConstantine UniversityConstantineAlgeria

Personalised recommendations