Advertisement

Investigation of Nonlinear Magnetic Properties Magneto-Mechano-Chemical Synthesized Nanocomplex from Magnetite and Antitumor Antibiotic Doxorubicin

  • V. E. Orel
  • A. D. Shevchenko
  • A. Y. Rykhalskiy
  • A. P. Burlaka
  • S. N. Lukin
  • I. B. Schepotin
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

Magneto-mechano-chemical technology is a new method for the synthesis of magneto-sensitive complex nanoparticles. The method is based on the integration of two known methods: mechano-chemical synthesis and synthesis of enzymes in a micro-reactor with magnetic elements. The aim of this chapter is the research of nonlinear magnetic properties of magneto-mechano-chemical nanocomplex synthesized from magnetite and antitumor antibiotic doxorubicin (DOXO) and the influence of a constant magnetic field (CMF) and electromagnetic field (EMF) during the synthesis of magneto-mechano-chemical nanocomplex (NC) with Fe3O4 nanoparticles and DOXO using the method of magnetometry and electron paramagnetic resonance spectra (EPR). It was observed that the coercivity increased in all experiments. The number of paramagnetic centers, the magnetic moment, and the EPR line width demonstrated nonlinear properties change. In the experiment with 8-mT CMF and 2-W output power EMF saturation magnetic moment, the number of paramagnetic centers and EPR line width reached maximum values. Results of the study are promising for practical application in magnetic nanotherapy for cancer.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Fe3O4 Nanoparticles Paramagnetic Center Constant Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shenoi MM, Shah NB, Griffin RJ et al (2011) Nanoparticle pre-conditioning for enhanced thermal therapies in Cancer. Nanomedicine (Lond) 6(3):545–563CrossRefGoogle Scholar
  2. 2.
    Xiang-Hong P, Ximei Q, Hui M et al (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 3(3):311–321Google Scholar
  3. 3.
    Roca AG, Costa R, Rebolledo AF, Veintemillas-Verdaguer S et al (2009) Progress in preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:1–11;Google Scholar
  4. 4.
    Fisher JK, Vicci L, Cribb J et al (2006). Superfine magnetic force micromanipulation systems for the biological sciences. NANO Br Rep Rev 1(3):191–205Google Scholar
  5. 5.
    Gutman EM (1998) Mechanochemistry of materials. Int Science Publishing, CambridgeGoogle Scholar
  6. 6.
    Kuramitz H (2009) Magnetic microbead-based electrochemical immunoassays. Anal Bioanal Chem 394(1):61–69CrossRefGoogle Scholar
  7. 7.
    Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering‎. Springer, BerlinGoogle Scholar
  8. 8.
    Cohen AE (2009) Nanomagnetic control of intersystem crossing. J Phys Chem 113:11084–11084Google Scholar
  9. 9.
    Wang H, Yu Y, Sun Y, Chen Q (2011) Magnetic nanochains: a review. NANO Br Rep Rev 6(1):1–17Google Scholar
  10. 10.
    Britigan BE, Serody JS, Cohen MS (1994) The role of lactoferrin as an anti-inflammatory molecule. Adv Exp Med Biol 357:143–156CrossRefGoogle Scholar
  11. 11.
    Gille L, Kleiter M, Willmann M, Nohl H (2002) Paramagnetic species in the plasma of dogs with lymphoma prior to and after treatment with doxorubicin. An ESR study. Biochem Pharmacol 64(12):1737–1744CrossRefGoogle Scholar
  12. 12.
    Kosevich AM, Ivanov VA, Kovalev AS (1983) Nonlinear waves of magnetization. Dynamic and topological solitons, Kiev (in Russian)Google Scholar
  13. 13.
    Orel VE, Shchepotin IB, Smolanka II et al (2012) Radiofrequency hyperthermia of malignant neoplasm, nanotechnology and dynamic chaos. Ukrmedbook (in Russian)Google Scholar
  14. 14.
    Orel VE, Romanov AV, Dzyatkovska NN et al (2013) Magnenic nanotherapy of cancer. LAP Lambert Academic Publishing, Saarbrücken (in Russian)Google Scholar
  15. 15.
    Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Kosevich AM, Ivanov BA, Kovalev AS (1990) Magnetic solitons. Phys Rep 194(3–4):117–238CrossRefADSGoogle Scholar
  17. 17.
    Stoll RL (1974) The analysis of eddy currents. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Fert A (2008) The origin, development and future of spintronics. Phys Usp 178(12):1336–1348Google Scholar
  19. 19.
    Symons M, Gutteridge J (1998) Free radicals and iron: chemistry, biology, and medicine. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Livingston JD (1981) A review of coercivity mechanisms. J Appl Phys 52(3):2541–2545MathSciNetADSGoogle Scholar
  21. 21.
    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H et al (2010) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastomamultiforme. J Neurooncol 103(2):317–324CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • V. E. Orel
    • 1
  • A. D. Shevchenko
    • 2
  • A. Y. Rykhalskiy
    • 1
  • A. P. Burlaka
    • 3
  • S. N. Lukin
    • 3
  • I. B. Schepotin
    • 1
  1. 1.National Cancer Institute/33/43KyivUkraine
  2. 2.G.V. KurdyumovInstitute for Metal Physics/36KyivUkraine
  3. 3.R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology/45KyivUkraine

Personalised recommendations