Skip to main content

Carbon-Based Piezoresistive Polymer Composites

  • Conference paper
  • First Online:
Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 156))

  • 1154 Accesses

Abstract

Carbon-based polymer composites have acquired significant attention due to their outstanding properties. In this chapter, we analyse the most interesting characteristics of this type of polymer composites, from the structural to the applicative point of view. In particular, we will focus on the characteristics of carbon nanotubes and expanded graphite and on the electrical conductivity mechanisms. Piezoresistive properties of the composites are discussed with the aim to highlight their promising applications in the field of deformation-sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alamusi, Hu N, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723

    Article  Google Scholar 

  2. Anderson SH, Chung DDL (1984) Exfoliation of intercalated graphite. Carbon 22(3):253–263

    Article  Google Scholar 

  3. Bian J, Xiao M, Wang SJ, Lu YX, Meng YZ (2009) Novel application of thermally expanded graphite as support of catalysts for direct synthesis of DMC from CH3OH and CO2. J Colloid Interface Sci 334:50–57

    Article  Google Scholar 

  4. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48:4907–4920

    Article  Google Scholar 

  5. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351

    Article  ADS  Google Scholar 

  6. Bug ALR, Safran SA, Webman I (1985) Continuum percolation rods. Phys Rev Lett 54(13):1412–1415

    Article  ADS  Google Scholar 

  7. Cesano F, Bertarione S, Scarano D, Zecchina A (2005) Connecting carbon fibers by means of catalytically grown nanofilaments: Formation of carbon-carbon composites. Chem Mater 17(20):5119–5123

    Article  Google Scholar 

  8. Cesano F, Pellerej D, Scarano D, Ricchiardi G, Zecchina A (2012) Radially organized pillars of TiO2 nanoparticles: synthesis, characterization and photocatalytic tests. J Photochem Photobiol a-Chem 242:51–58

    Article  Google Scholar 

  9. Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM (2008) Continuous carbon nanotube reinforced composites. Nano Lett 8(9):2762–2766

    Article  ADS  Google Scholar 

  10. Clingerman ML, Weber EH, King JA (2002) Synergistic effects of carbon fillers in electrically conductive nylon 6, 6 and polycarbonate based resins. Polym Compos 23(5):911–924

    Article  Google Scholar 

  11. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652

    Article  Google Scholar 

  12. Connor MT, Roy S, Ezquerra TA, Balta’ Calleja FJ (1998) Broadband ac conductivity of conductor-polymer composites. Phys Rev B 57(4):2286–2294

    Article  ADS  Google Scholar 

  13. Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD (2002) Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos Sci 62:1105–1112

    Article  Google Scholar 

  14. Cravanzola S, Haznedar G, Scarano D, Zecchina A, Cesano F (2013) Carbon-based piezoresistive polymer composites: Structure and electrical properties. Carbon 62:270–277

    Article  Google Scholar 

  15. Dai H (2002) Caron nanotube: synthesis, integration and properties. Acc Chem Res 35:1035–1044

    Article  Google Scholar 

  16. Dang Z-M, Jiang M-J, Xie D, Yao S-H, Zhang L-Q, Bai J (2008) Supersensitive linear piezoresistive property in carbon nanotubes/silicone rubber nanocomposites. J Appl Phys 104(2):024114

    Article  ADS  Google Scholar 

  17. Das S (2013) A review on carbon nano-tubes—a new era of nanotechnology. Int J Emer Tech Adv Eng 3(3):774–783

    Google Scholar 

  18. Du J, Cheng H-M (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 2013(10–11):1060–1077

    Google Scholar 

  19. Du X, Skachko I, Duerr F, Luican A, Andrei EY (2009) Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462:192–195

    Article  ADS  Google Scholar 

  20. Etika KC, Liu L, Hess LA, Grunlan JC (2009) The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon 47(13):3128–3136

    Article  Google Scholar 

  21. Foulger S (1999) Electrical properties of composites in the vicinity of the percolation threshold. J Appl Polym Sci 72:1573–1582

    Article  Google Scholar 

  22. Frank IW, Tanenbaum DM, Van der Zande AM, McEuen PL (2007) Mechanical properties of suspended graphene sheets. JVacSciTechnol B 25(6):2558

    Google Scholar 

  23. Gao G, Cagin T, Goddard WA (1997) Energetics, structure, mechanical and vibrational properties of Single Walled Carbon Nanotubes (SWNT). Paper presented at the fifth foresight conference on molecular nanotechnology, Palo Alto, CA

    Google Scholar 

  24. Gau C, Ko SH, Chen HT (2009) Piezoresistive characteristics of MWCNT nanocomposites and fabrication as a polymer pressure sensor. Nanotechnology 20(18):185503

    Article  ADS  Google Scholar 

  25. Ha HJ, Kwon YH, Kim JY, Lee S-Y (2011) A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery. Electrochim Acta 57:40–45

    Article  Google Scholar 

  26. Hautamaki C, Zurn S, Mantell SC, Polla D (1999) Microelectromechanical Systems (MEMS) as embedded sensors in composites. J Microelectromech Syst 8(3):272–279

    Article  Google Scholar 

  27. Haznedar G, Cravanzola S, Zanetti M, Scarano D, Zecchina A, Cesano F (2013) Graphite nanoplatelets and carbon nanotubes based polyethylene composites: electrical conductivity and morphology. Mater Chem Phys 143:47–52

    Google Scholar 

  28. Hill TL (1986) An introduction to statistical thermodynamics. Dover, New York

    Google Scholar 

  29. Huang C-T, Shen C-L, Tang CF, Chang S (2008) A wearable yarn-based piezo-resistive sensor. Sensor Actuat A-Phys 141:396–403

    Article  Google Scholar 

  30. Huang Y, Qin Y, Zhou Y, Niu H, Yu Z-Z, Dong J-Y (2010) Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler−Natta polymerization. Chem Mater 22(13):4096–4102

    Article  Google Scholar 

  31. Hwang S-H, Park H, Park Y-B (2013) Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube-graphene nanoplatelet hybrid sheets. Smart Mater Struct 22(1):015013

    Article  MathSciNet  ADS  Google Scholar 

  32. Kane BJ, Cutkosky MR, Kovacs GTA (2000) A traction stress sensor array for use in high-resolution robotic tactile imaging. J Microelectromech Syst 9(4):425–434

    Article  Google Scholar 

  33. Kostagiannakopoulou C, Maroutsos G, Sotiriadis G, Vavouliotis A, Kostopoulos V (2012) Study on the synergistic effects of graphene/carbon nanotubes polymer nanocomposites. Proc SPIE 8409, third international conference on smart materials and nanotechnology in engineering, 8409

    Google Scholar 

  34. Ku-Herrera JJ, Avilés F (2012) Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes. Carbon 50:2592–2598

    Article  Google Scholar 

  35. Kwon SY, Park YK, Kim MS (2012) Piezoresistive properties of multi-walled carbon nanotube-poly(dimethylsiloxane) composites for low-pressure-sensing applications. NANO: Brief Rep Rev 7(1):1250005

    Article  Google Scholar 

  36. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 328(5887):385–388

    Article  ADS  Google Scholar 

  37. Lin W, Zhang R, Wong CP (2010) Modeling of thermal conductivity of graphite nanosheet composites. J Electron Mater 39(3):268–272

    Article  ADS  Google Scholar 

  38. LiuCh06v3.qxd (2005) Piezoresisitve sensors: Chap. 6

    Google Scholar 

  39. Loyola BR, La Saponara V, Loh KJ (2010) In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. J Mater Sci 45:6786–6798

    Article  ADS  Google Scholar 

  40. Lü C, Cheng Y, Liu Y, Liu F, Yang B (2006) A facile route to ZnS-polymer nanocomposite optical materials with high nanophase content via gamma-ray irradiation initiated bulk polymerization. Adv Mater 18(9):1188–1192

    Article  Google Scholar 

  41. Luheng W, Tianhuai D, Peng W (2009) Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon 47:14

    Article  Google Scholar 

  42. Ma P-C, Liu M-Y, Zhang H, Wang S-Q, Wang R, Wang K, Wong Y-K, Tang B-Z, Hong S-H, Paik K-W, Kim J-K (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. Appl Mater Interfaces 1(5):1090–1096

    Article  Google Scholar 

  43. McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci 43:3273–3287

    Article  Google Scholar 

  44. Medvedyeva MV, Blanter YM (2011) Piezoconductivity of gated suspended graphene. Phys Rev B 83:045426

    Article  ADS  Google Scholar 

  45. Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) Electrical conductivity of carbon-polymer composites as a function of carbon content. J Mater Sci 17:1601–1616

    Article  ADS  Google Scholar 

  46. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  ADS  Google Scholar 

  47. Mylvaganam K, Zhang LC (2007) Fabrication and application of polymer composites comprising carbon nanotubes. Recent Pat Nanotechnol 1:59–65

    Article  Google Scholar 

  48. Narkis M, Waxman A (1984) Resistivity behavior of filled electrically conductive crosslinked polyethylene. J Appl Polym Sci 29(5):1639–1652

    Google Scholar 

  49. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35(12):1105–1113

    Article  Google Scholar 

  50. Obitayo W, Liu T (2012) A review: carbon nanotube-based piezoresistive strain sensors. J Sens 2012:1–15

    Article  Google Scholar 

  51. Oliva AAI, Avilès F, Seidel GD, Sosa V (2013) On the contribution of carbon nanotube deformation to piezoresistivity of carbon nanotube/polymer composites. Compos Part B 47:200–206

    Article  Google Scholar 

  52. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  Google Scholar 

  53. Prasad KE, Das B, Maitra U, Ramamurty U, Rao CNR (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc Nat Acad Sci U S A 106(32):13186–13189

    Article  ADS  Google Scholar 

  54. Rahman MM, Cesano F, Bardelli F, Scarano D, Zecchina A (2010) Hybrid SnO2/carbon composites: from foams to films by playing with the reaction conditions. Catal Today 150(1):84–90

    Article  Google Scholar 

  55. Rocha JG, Paleo AJ, Hattum FWJ van, Lanceros-Méndez S (2012) Piezoresistive polypropylene-carbon nanofiber composites as mechanical transducers. Microsystem Technology 18(5):591–597

    Article  Google Scholar 

  56. Sanjinés R, Abad MD, Vâju C, Smajda R, Mionić M, Magrez A (2011) Electrical properties and applications of carbon based nanocomposite materials: an overview. Surf Coat Technol 206:727–733

    Article  Google Scholar 

  57. Sau KP, Chaki TK, Khastgir D (1997) Conductive rubber composites from different blends of ethylene-propylene-diene rubber and nitrile rubber. J Mater Sci 32(21):5717–5724

    Article  ADS  Google Scholar 

  58. Shui X, Chung DDL (1996) A piezoresistive carbon filament polymer-matrix composite strain sensor. Smart Mater Struct 5:243–246

    Article  ADS  Google Scholar 

  59. Siegel RW, Hu Evelyn H, Roco MC, Cox Donald M, Herb G (1999) Nanostructure science and technology: a worldwide study. Prepared under the guidance of the National Science and Technology Council (NSTC) Committee on Technology and the Interagency Working Group on NanoScience, Engineering and Technology (IWGN), Executive Summary: p xix

    Google Scholar 

  60. Spitalskya Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  Google Scholar 

  61. Stankovich S, Dikin D, Dommett G, Kevin M, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  ADS  Google Scholar 

  62. Stauffer D, Aharnoy A (1991) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  63. Steinmetz J, Lee H-J, Kwon S, Lee D-S, Goze-Bac C, Abou-Hamad E, Kim H, Park Y-W (2007) Routes to the synthesis of carbon nanotube-polyacetylene composites by Ziegler-Natta polymerization of acetylene inside carbon nanotubes. Curr Appl Phys 7(1):39–41

    Article  ADS  Google Scholar 

  64. Sugiyama S, Takigawa M, Igarashi I (1983) Integrated piezoresistive pressure sensor with both voltage and frequency output. Sens Actuators 4:113–120

    Article  Google Scholar 

  65. Sumfleth J, Adroher XC, Schulte K (2009) Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. J Mater Sci 44(12):3241–3247

    Article  ADS  Google Scholar 

  66. Sun Y, Bao H-D, Guo Z-X, Yu J (2009) Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42:459–463

    Article  ADS  Google Scholar 

  67. Teo KBK, Singh C, Chhowalla M, Milne WI (2004) Catalytic synthesis of carbon nanotubes and nanofibres. Encycl Nanosci Nanotechnol 1:1–22

    Google Scholar 

  68. Thomas WT, Chongwu Z, Leo A, Jing K, Hongjie D, Lei L, Jayanthi CS, Meijie T, Wu S-Y (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769–772

    Article  ADS  Google Scholar 

  69. Thongruang W, Spontak RJ, Balik CM (2002) Bridged double percolation in conductive polymer composites: an electrical conductivity, morphology and mechanical property study. Polymer 43(13):3717–3725

    Article  Google Scholar 

  70. Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi CS, Meijie T, Shi-Yu W (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769–772

    Article  ADS  Google Scholar 

  71. Tsitsilianis C, Gotzamanis G, Iatridi Z (2010) Design of “smart” segmented polymers by incorporating random copolymers as building blocks. Eur Polym J 47(4):497–510

    Article  Google Scholar 

  72. Velasco J Jr, Liu G, Bao W, Lau CN (2009) Electrical transport in high-quality graphene pnp junctions. New J Phys 11 (095008)

    Google Scholar 

  73. Wang P, Ding T (2009) Conductivity and piezoresistivity of conductive carbon black filled polymer composite. J Appl Polym Sci 116(4):2035–2039

    Google Scholar 

  74. Wang L, Ding T, Wang P (2008) Effects of instantaneous compression pressure on electrical resistance of carbon black filled silicone rubber composite during compressive stress relaxation. Compos Sci 68(15-16):3448–3450

    Article  Google Scholar 

  75. Watts PCP, Hsu WK (2003) Behaviours of embedded carbon nanotubes during film cracking. Nanotechnology 14(5):L7–L10

    Article  ADS  Google Scholar 

  76. Wei Z, Abbas ADehghani-Sanij, Blackburn RS (2007) Carbon based conductive polymer composites. J Mater Sci 42:3408–3418

    Article  Google Scholar 

  77. Wen M, Sun X, Su L, Shen J, Li J, Guo S (2012) The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7):1602–1610

    Article  Google Scholar 

  78. Yakovlev AV, Finaenov AI, Zabud’kov SL, Yakovleva EV (2006) Thermally expanded graphite: synthesis, properties, and prospect for use. Russ J App Chem 79(11):1741–1751

    Article  Google Scholar 

  79. Yang L, Ge Y, Zhu Q, Zhang C, Wang Z, Liu P (2012) Experimental and numerical studies on the sensitivity of carbon fibre/silicone rubber composite sensors. Smart Mater Struct 21:035011

    Article  ADS  Google Scholar 

  80. Yue X, Li L, Zhang R, Zhang F (2009) Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling. Mater Charact 60:1541–1544

    Article  Google Scholar 

  81. Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) Carbon based conductive polymer composites. J Mate Sci 42:3408–3418

    Article  ADS  Google Scholar 

  82. Zhang SM, Lin L, Deng H, Gao X, Bilotti E, Peijs T, Zhang Q, Fu Q (2012) Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Polym Lett 6(2):159–168

    Article  Google Scholar 

  83. Zhihua L, Yihu S, Yonggang S, Zheng Q (2007) Conductive behavior of composites composed of carbon black-filled ethylene-tetrafluoroethylene copolymer. J Mater Sci 42:2903–2906

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Cravanzola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cravanzola, S., Cesano, F., Muscuso, L., Scarano, D., Zecchina, A. (2015). Carbon-Based Piezoresistive Polymer Composites. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_4

Download citation

Publish with us

Policies and ethics