Carbon-Based Piezoresistive Polymer Composites

  • Sara CravanzolaEmail author
  • Federico Cesano
  • Lucia Muscuso
  • Domenica Scarano
  • Adriano Zecchina
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)


Carbon-based polymer composites have acquired significant attention due to their outstanding properties. In this chapter, we analyse the most interesting characteristics of this type of polymer composites, from the structural to the applicative point of view. In particular, we will focus on the characteristics of carbon nanotubes and expanded graphite and on the electrical conductivity mechanisms. Piezoresistive properties of the composites are discussed with the aim to highlight their promising applications in the field of deformation-sensing devices.


Percolation Threshold Expandable Graphite Conductive Filler Strain Sensor Proof Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alamusi, Hu N, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723CrossRefGoogle Scholar
  2. 2.
    Anderson SH, Chung DDL (1984) Exfoliation of intercalated graphite. Carbon 22(3):253–263CrossRefGoogle Scholar
  3. 3.
    Bian J, Xiao M, Wang SJ, Lu YX, Meng YZ (2009) Novel application of thermally expanded graphite as support of catalysts for direct synthesis of DMC from CH3OH and CO2. J Colloid Interface Sci 334:50–57CrossRefGoogle Scholar
  4. 4.
    Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48:4907–4920CrossRefGoogle Scholar
  5. 5.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351ADSCrossRefGoogle Scholar
  6. 6.
    Bug ALR, Safran SA, Webman I (1985) Continuum percolation rods. Phys Rev Lett 54(13):1412–1415ADSCrossRefGoogle Scholar
  7. 7.
    Cesano F, Bertarione S, Scarano D, Zecchina A (2005) Connecting carbon fibers by means of catalytically grown nanofilaments: Formation of carbon-carbon composites. Chem Mater 17(20):5119–5123CrossRefGoogle Scholar
  8. 8.
    Cesano F, Pellerej D, Scarano D, Ricchiardi G, Zecchina A (2012) Radially organized pillars of TiO2 nanoparticles: synthesis, characterization and photocatalytic tests. J Photochem Photobiol a-Chem 242:51–58CrossRefGoogle Scholar
  9. 9.
    Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM (2008) Continuous carbon nanotube reinforced composites. Nano Lett 8(9):2762–2766ADSCrossRefGoogle Scholar
  10. 10.
    Clingerman ML, Weber EH, King JA (2002) Synergistic effects of carbon fillers in electrically conductive nylon 6, 6 and polycarbonate based resins. Polym Compos 23(5):911–924CrossRefGoogle Scholar
  11. 11.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652CrossRefGoogle Scholar
  12. 12.
    Connor MT, Roy S, Ezquerra TA, Balta’ Calleja FJ (1998) Broadband ac conductivity of conductor-polymer composites. Phys Rev B 57(4):2286–2294ADSCrossRefGoogle Scholar
  13. 13.
    Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD (2002) Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos Sci 62:1105–1112CrossRefGoogle Scholar
  14. 14.
    Cravanzola S, Haznedar G, Scarano D, Zecchina A, Cesano F (2013) Carbon-based piezoresistive polymer composites: Structure and electrical properties. Carbon 62:270–277CrossRefGoogle Scholar
  15. 15.
    Dai H (2002) Caron nanotube: synthesis, integration and properties. Acc Chem Res 35:1035–1044CrossRefGoogle Scholar
  16. 16.
    Dang Z-M, Jiang M-J, Xie D, Yao S-H, Zhang L-Q, Bai J (2008) Supersensitive linear piezoresistive property in carbon nanotubes/silicone rubber nanocomposites. J Appl Phys 104(2):024114ADSCrossRefGoogle Scholar
  17. 17.
    Das S (2013) A review on carbon nano-tubes—a new era of nanotechnology. Int J Emer Tech Adv Eng 3(3):774–783Google Scholar
  18. 18.
    Du J, Cheng H-M (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 2013(10–11):1060–1077Google Scholar
  19. 19.
    Du X, Skachko I, Duerr F, Luican A, Andrei EY (2009) Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462:192–195ADSCrossRefGoogle Scholar
  20. 20.
    Etika KC, Liu L, Hess LA, Grunlan JC (2009) The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon 47(13):3128–3136CrossRefGoogle Scholar
  21. 21.
    Foulger S (1999) Electrical properties of composites in the vicinity of the percolation threshold. J Appl Polym Sci 72:1573–1582CrossRefGoogle Scholar
  22. 22.
    Frank IW, Tanenbaum DM, Van der Zande AM, McEuen PL (2007) Mechanical properties of suspended graphene sheets. JVacSciTechnol B 25(6):2558Google Scholar
  23. 23.
    Gao G, Cagin T, Goddard WA (1997) Energetics, structure, mechanical and vibrational properties of Single Walled Carbon Nanotubes (SWNT). Paper presented at the fifth foresight conference on molecular nanotechnology, Palo Alto, CAGoogle Scholar
  24. 24.
    Gau C, Ko SH, Chen HT (2009) Piezoresistive characteristics of MWCNT nanocomposites and fabrication as a polymer pressure sensor. Nanotechnology 20(18):185503ADSCrossRefGoogle Scholar
  25. 25.
    Ha HJ, Kwon YH, Kim JY, Lee S-Y (2011) A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery. Electrochim Acta 57:40–45CrossRefGoogle Scholar
  26. 26.
    Hautamaki C, Zurn S, Mantell SC, Polla D (1999) Microelectromechanical Systems (MEMS) as embedded sensors in composites. J Microelectromech Syst 8(3):272–279CrossRefGoogle Scholar
  27. 27.
    Haznedar G, Cravanzola S, Zanetti M, Scarano D, Zecchina A, Cesano F (2013) Graphite nanoplatelets and carbon nanotubes based polyethylene composites: electrical conductivity and morphology. Mater Chem Phys 143:47–52Google Scholar
  28. 28.
    Hill TL (1986) An introduction to statistical thermodynamics. Dover, New YorkGoogle Scholar
  29. 29.
    Huang C-T, Shen C-L, Tang CF, Chang S (2008) A wearable yarn-based piezo-resistive sensor. Sensor Actuat A-Phys 141:396–403CrossRefGoogle Scholar
  30. 30.
    Huang Y, Qin Y, Zhou Y, Niu H, Yu Z-Z, Dong J-Y (2010) Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler−Natta polymerization. Chem Mater 22(13):4096–4102CrossRefGoogle Scholar
  31. 31.
    Hwang S-H, Park H, Park Y-B (2013) Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube-graphene nanoplatelet hybrid sheets. Smart Mater Struct 22(1):015013MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Kane BJ, Cutkosky MR, Kovacs GTA (2000) A traction stress sensor array for use in high-resolution robotic tactile imaging. J Microelectromech Syst 9(4):425–434CrossRefGoogle Scholar
  33. 33.
    Kostagiannakopoulou C, Maroutsos G, Sotiriadis G, Vavouliotis A, Kostopoulos V (2012) Study on the synergistic effects of graphene/carbon nanotubes polymer nanocomposites. Proc SPIE 8409, third international conference on smart materials and nanotechnology in engineering, 8409Google Scholar
  34. 34.
    Ku-Herrera JJ, Avilés F (2012) Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes. Carbon 50:2592–2598CrossRefGoogle Scholar
  35. 35.
    Kwon SY, Park YK, Kim MS (2012) Piezoresistive properties of multi-walled carbon nanotube-poly(dimethylsiloxane) composites for low-pressure-sensing applications. NANO: Brief Rep Rev 7(1):1250005CrossRefGoogle Scholar
  36. 36.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 328(5887):385–388ADSCrossRefGoogle Scholar
  37. 37.
    Lin W, Zhang R, Wong CP (2010) Modeling of thermal conductivity of graphite nanosheet composites. J Electron Mater 39(3):268–272ADSCrossRefGoogle Scholar
  38. 38.
    LiuCh06v3.qxd (2005) Piezoresisitve sensors: Chap. 6Google Scholar
  39. 39.
    Loyola BR, La Saponara V, Loh KJ (2010) In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. J Mater Sci 45:6786–6798ADSCrossRefGoogle Scholar
  40. 40.
    Lü C, Cheng Y, Liu Y, Liu F, Yang B (2006) A facile route to ZnS-polymer nanocomposite optical materials with high nanophase content via gamma-ray irradiation initiated bulk polymerization. Adv Mater 18(9):1188–1192CrossRefGoogle Scholar
  41. 41.
    Luheng W, Tianhuai D, Peng W (2009) Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon 47:14CrossRefGoogle Scholar
  42. 42.
    Ma P-C, Liu M-Y, Zhang H, Wang S-Q, Wang R, Wang K, Wong Y-K, Tang B-Z, Hong S-H, Paik K-W, Kim J-K (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. Appl Mater Interfaces 1(5):1090–1096CrossRefGoogle Scholar
  43. 43.
    McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci 43:3273–3287CrossRefGoogle Scholar
  44. 44.
    Medvedyeva MV, Blanter YM (2011) Piezoconductivity of gated suspended graphene. Phys Rev B 83:045426ADSCrossRefGoogle Scholar
  45. 45.
    Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) Electrical conductivity of carbon-polymer composites as a function of carbon content. J Mater Sci 17:1601–1616ADSCrossRefGoogle Scholar
  46. 46.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205ADSCrossRefGoogle Scholar
  47. 47.
    Mylvaganam K, Zhang LC (2007) Fabrication and application of polymer composites comprising carbon nanotubes. Recent Pat Nanotechnol 1:59–65CrossRefGoogle Scholar
  48. 48.
    Narkis M, Waxman A (1984) Resistivity behavior of filled electrically conductive crosslinked polyethylene. J Appl Polym Sci 29(5):1639–1652Google Scholar
  49. 49.
    Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35(12):1105–1113CrossRefGoogle Scholar
  50. 50.
    Obitayo W, Liu T (2012) A review: carbon nanotube-based piezoresistive strain sensors. J Sens 2012:1–15CrossRefGoogle Scholar
  51. 51.
    Oliva AAI, Avilès F, Seidel GD, Sosa V (2013) On the contribution of carbon nanotube deformation to piezoresistivity of carbon nanotube/polymer composites. Compos Part B 47:200–206CrossRefGoogle Scholar
  52. 52.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRefGoogle Scholar
  53. 53.
    Prasad KE, Das B, Maitra U, Ramamurty U, Rao CNR (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc Nat Acad Sci U S A 106(32):13186–13189ADSCrossRefGoogle Scholar
  54. 54.
    Rahman MM, Cesano F, Bardelli F, Scarano D, Zecchina A (2010) Hybrid SnO2/carbon composites: from foams to films by playing with the reaction conditions. Catal Today 150(1):84–90CrossRefGoogle Scholar
  55. 55.
    Rocha JG, Paleo AJ, Hattum FWJ van, Lanceros-Méndez S (2012) Piezoresistive polypropylene-carbon nanofiber composites as mechanical transducers. Microsystem Technology 18(5):591–597CrossRefGoogle Scholar
  56. 56.
    Sanjinés R, Abad MD, Vâju C, Smajda R, Mionić M, Magrez A (2011) Electrical properties and applications of carbon based nanocomposite materials: an overview. Surf Coat Technol 206:727–733CrossRefGoogle Scholar
  57. 57.
    Sau KP, Chaki TK, Khastgir D (1997) Conductive rubber composites from different blends of ethylene-propylene-diene rubber and nitrile rubber. J Mater Sci 32(21):5717–5724ADSCrossRefGoogle Scholar
  58. 58.
    Shui X, Chung DDL (1996) A piezoresistive carbon filament polymer-matrix composite strain sensor. Smart Mater Struct 5:243–246ADSCrossRefGoogle Scholar
  59. 59.
    Siegel RW, Hu Evelyn H, Roco MC, Cox Donald M, Herb G (1999) Nanostructure science and technology: a worldwide study. Prepared under the guidance of the National Science and Technology Council (NSTC) Committee on Technology and the Interagency Working Group on NanoScience, Engineering and Technology (IWGN), Executive Summary: p xixGoogle Scholar
  60. 60.
    Spitalskya Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401CrossRefGoogle Scholar
  61. 61.
    Stankovich S, Dikin D, Dommett G, Kevin M, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286ADSCrossRefGoogle Scholar
  62. 62.
    Stauffer D, Aharnoy A (1991) Introduction to percolation theory. Taylor & Francis, LondonGoogle Scholar
  63. 63.
    Steinmetz J, Lee H-J, Kwon S, Lee D-S, Goze-Bac C, Abou-Hamad E, Kim H, Park Y-W (2007) Routes to the synthesis of carbon nanotube-polyacetylene composites by Ziegler-Natta polymerization of acetylene inside carbon nanotubes. Curr Appl Phys 7(1):39–41ADSCrossRefGoogle Scholar
  64. 64.
    Sugiyama S, Takigawa M, Igarashi I (1983) Integrated piezoresistive pressure sensor with both voltage and frequency output. Sens Actuators 4:113–120CrossRefGoogle Scholar
  65. 65.
    Sumfleth J, Adroher XC, Schulte K (2009) Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. J Mater Sci 44(12):3241–3247ADSCrossRefGoogle Scholar
  66. 66.
    Sun Y, Bao H-D, Guo Z-X, Yu J (2009) Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42:459–463ADSCrossRefGoogle Scholar
  67. 67.
    Teo KBK, Singh C, Chhowalla M, Milne WI (2004) Catalytic synthesis of carbon nanotubes and nanofibres. Encycl Nanosci Nanotechnol 1:1–22Google Scholar
  68. 68.
    Thomas WT, Chongwu Z, Leo A, Jing K, Hongjie D, Lei L, Jayanthi CS, Meijie T, Wu S-Y (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769–772ADSCrossRefGoogle Scholar
  69. 69.
    Thongruang W, Spontak RJ, Balik CM (2002) Bridged double percolation in conductive polymer composites: an electrical conductivity, morphology and mechanical property study. Polymer 43(13):3717–3725CrossRefGoogle Scholar
  70. 70.
    Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi CS, Meijie T, Shi-Yu W (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769–772ADSCrossRefGoogle Scholar
  71. 71.
    Tsitsilianis C, Gotzamanis G, Iatridi Z (2010) Design of “smart” segmented polymers by incorporating random copolymers as building blocks. Eur Polym J 47(4):497–510CrossRefGoogle Scholar
  72. 72.
    Velasco J Jr, Liu G, Bao W, Lau CN (2009) Electrical transport in high-quality graphene pnp junctions. New J Phys 11 (095008)Google Scholar
  73. 73.
    Wang P, Ding T (2009) Conductivity and piezoresistivity of conductive carbon black filled polymer composite. J Appl Polym Sci 116(4):2035–2039Google Scholar
  74. 74.
    Wang L, Ding T, Wang P (2008) Effects of instantaneous compression pressure on electrical resistance of carbon black filled silicone rubber composite during compressive stress relaxation. Compos Sci 68(15-16):3448–3450CrossRefGoogle Scholar
  75. 75.
    Watts PCP, Hsu WK (2003) Behaviours of embedded carbon nanotubes during film cracking. Nanotechnology 14(5):L7–L10ADSCrossRefGoogle Scholar
  76. 76.
    Wei Z, Abbas ADehghani-Sanij, Blackburn RS (2007) Carbon based conductive polymer composites. J Mater Sci 42:3408–3418CrossRefGoogle Scholar
  77. 77.
    Wen M, Sun X, Su L, Shen J, Li J, Guo S (2012) The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7):1602–1610CrossRefGoogle Scholar
  78. 78.
    Yakovlev AV, Finaenov AI, Zabud’kov SL, Yakovleva EV (2006) Thermally expanded graphite: synthesis, properties, and prospect for use. Russ J App Chem 79(11):1741–1751CrossRefGoogle Scholar
  79. 79.
    Yang L, Ge Y, Zhu Q, Zhang C, Wang Z, Liu P (2012) Experimental and numerical studies on the sensitivity of carbon fibre/silicone rubber composite sensors. Smart Mater Struct 21:035011ADSCrossRefGoogle Scholar
  80. 80.
    Yue X, Li L, Zhang R, Zhang F (2009) Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling. Mater Charact 60:1541–1544CrossRefGoogle Scholar
  81. 81.
    Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) Carbon based conductive polymer composites. J Mate Sci 42:3408–3418ADSCrossRefGoogle Scholar
  82. 82.
    Zhang SM, Lin L, Deng H, Gao X, Bilotti E, Peijs T, Zhang Q, Fu Q (2012) Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Polym Lett 6(2):159–168CrossRefGoogle Scholar
  83. 83.
    Zhihua L, Yihu S, Yonggang S, Zheng Q (2007) Conductive behavior of composites composed of carbon black-filled ethylene-tetrafluoroethylene copolymer. J Mater Sci 42:2903–2906ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sara Cravanzola
    • 1
    Email author
  • Federico Cesano
    • 1
  • Lucia Muscuso
    • 1
  • Domenica Scarano
    • 1
  • Adriano Zecchina
    • 1
  1. 1.Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces), Centre of Excellence and INSTM Centro di RiferimentoUniversity of TorinoTorinoItaly

Personalised recommendations