Advertisement

Future Strain Properties of Multilayer Film Materials

  • Serhyi I. ProtsenkoEmail author
  • Larysa V. Odnodvorets
  • Ivan Yu. Protsenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

This chapter is devoted to the strain properties of multilayer thin-film materials based on metals. Although this problem is the subject of study researchers, many questions remain poorly understood, which include the development of a theoretical model of the tensoresistive effect for multilayer films and a comparative analysis of its features in the range of elastic and plastic strain and temperature dependence of strain coefficient. This work also focuses on the question about increase of strain coefficient through the surface, grain boundary and interface scattering of electrons. The purpose of this work is analytical analysis of the known theoretical models of tensoresistive effect: linearized and three-dimensional Tellier–Tosser–Pichard models for one layer and semiphenomenological model for multilayer by authors of this work, which takes into account the dependence of the electron transport parameters (mean free path, specularity parameter and transmission coefficient at the boundary and interface). The purpose of this work was to compare the theoretical models and experimental results obtained in the field of elastic deformation and analysis of the temperature dependence of strain coefficient and the insufficiently explored question of magneto-deformation effect. The presented results allow us to more accurately describe the physical processes in the multilayer films under strain, especially to understand the processes in the elastic and plastic strain and the conclusion on the application of multilayer films as sensitive elements of sensors strain, magnetic field and pressure.

Keywords

Multilayer Film Size Effect Strain Effect Polycrystalline Film Film System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was carried out with financial support from the Ministry of Education and Science of Ukraine.

References

  1. 1.
    Alalykin SS, Alalykin AS, Danilov AA, Krylov PN (2007) Tenzorezistivnye svoistva nanorazmernykh multisloinykh structure Cu/Fe. Bulletin University of Udmurtia 4:84–87Google Scholar
  2. 2.
    Anwarzai B, Ac V, Luby S, Majkova E, Sendera R (2010) Pseudo spin-valve on plastic substrate as sensing elements of mechanical strain. Vacuum 84:108–110Google Scholar
  3. 3.
    Buryk PI, Velykodnyi DV, Odnodvorets LV, Protsenko IYu, Tkach OP (2011) Tensoresistive effect in thin metal films in the range of elastic and plastic strain. Tech Phys 56(2):232–237Google Scholar
  4. 4.
    Cammarata RC, Schlesinger TE, Kim C, Qadri SB, Edelstein S (1990) Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films. Appl Phys Lett 59(9):1862–1864.ADSGoogle Scholar
  5. 5.
    Cheshko IV, Protsenko IYu (2009) Formuvannya metastabil’nykh tverdykh rozchyniv u plivkovykh systemakh na osnove Co i Cu, Ag ta Au. Metallofiz Noveishie Technol 31(7):963–967Google Scholar
  6. 6.
    Cheshko IV, Makukha ZM, Odnodvorets LV, Shumakova MO, Velykodnyi DV, Protsenko IYu (2013) Strain effect on magneto-optical and magnetic properties of film system based on Fe and Pt. Univ J Mater Sci 1(2):13–17Google Scholar
  7. 7.
    Chornous AM, Opanasyuk NM, Pogrebnjak AD, Protsenko IYu (2000) Experimental test of a three-dimensional model for electrophysical properties of metal films. Jpn J Appl Phys 39(12B):L1320–L1323ADSGoogle Scholar
  8. 8.
    Dekhtyaruk L, Pazukha I, Protsenko S, Cheshko I (2006) Conductivity of single-crystal and polycrystalline bilayer metal films under the conditions of interdiffusion. Phys Solid State 48(10):1831–1843ADSGoogle Scholar
  9. 9.
    Dekhtyaruk LV, Protsenko IYu, Chornous AM (2007) Transportni rozmirni effecty u dvosharovykh polikrystakichnykh plivkakh. Usp Fiz Met 8(1):21–64Google Scholar
  10. 10.
    Emery RD, Povirk GL (2003) Tensile behavior of free-standing gold films. Part I. Coarse-graines films. Acta Mater 51:2067–2078Google Scholar
  11. 11.
    Espinosa HD, Prorok BC, Peng B (2004) Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J Mech Phys Solids 52:667–689ADSGoogle Scholar
  12. 12.
    Fu B, Gao L (2006) Tantalum nitride/copper nanocomposite with zero temperature coefficient of resistance. Scripta Mater 55:521–524.Google Scholar
  13. 13.
    Ghodgaokard AM, Ramani K (1980) Computation of the strain coefficient of resistivity in thin metallic films. Phys Stat Sol A 60(1):С99–С109Google Scholar
  14. 14.
    Hrovat M, Belavic D, Samardzija Z, Holc J (2001) A characterization of thick film resistors for strain gauge applications. J Mater Sci 36:2679–2689ADSGoogle Scholar
  15. 15.
    Ievlev VM, Belonogov EK, Maksimenko AA, Agapov BL, Shkatov VV (2006) Substructura i prochnost’ condensirovannykh plenok palladiya. Deformatsiya i razrushenie materialov. V.1. MGIU, Moskow, pp 468–471Google Scholar
  16. 16.
    Jen SU, Wu TC, Liu CH (2003) Piezoresistance characteristics of some magnetic and non-magnetic metal films. J Magn Magnet Mat 256:54–62ADSGoogle Scholar
  17. 17.
    Khater F, El-Hiti M (1988a) Strain coefficients of electrical resistance of double-layer thin metallic films. Phys Stat Sol A 108(1):241–249ADSGoogle Scholar
  18. 18.
    Khater F, El-Hiti M (1988b) Temperature coefficient of the strain coefficient of electrical resistivity of double-layer thin metallic films. Phys Stat Sol A 109(2):517–523ADSGoogle Scholar
  19. 19.
    Koppert R, Goettel D, Freitag-Weber O, Shultes G (2009) Nickel containing diamond like carbon thin films. Solid State Sci 11:1797–1800ADSGoogle Scholar
  20. 20.
    Kuczynski GC (1954) Effect of elastic strain on the electrical resistance of metals. Phys Rev 94(1):61–64ADSGoogle Scholar
  21. 21.
    Lasyuchenko O, Odnodvorets L, Protsenko I (2000) Microscopic theory of tensosensibility of multilayer polycrystalline films. Cryst Res Technol 35(3):329–332Google Scholar
  22. 22.
    Lee H-J, Cornella G, Bravman JC (2000) Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications. Appl Phys Lett 76(23):3415–3417ADSGoogle Scholar
  23. 23.
    Lee HJ, Zhang P, Bravman JC (2003) Tensile failure by grain thinning in micromachined aluminum thin films. Appl Phys 93:1443–1451Google Scholar
  24. 24.
    Luby S, Anwarzai B, Aĉ V, Majkova E, Senderak R (2012) Pseudo spin-valve with different spacer thickness as sensing elements of mechanical strain. Vacuum 86:718–720Google Scholar
  25. 25.
    Makukha ZM, Protsenko SI, Odnodvorets LV, Protsenko IYu (2012) Magneto-strain effect in double-layer film systems. J Nano Electron Phys 4(2) Part II. doi:02043-1-02043-3Google Scholar
  26. 26.
    Mayadas AF, Shatzkes M (1970) Electrical resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys Rev B1(4):1382–1389ADSGoogle Scholar
  27. 27.
    Meiksin ZH (1975) Discontinuous and cermet films. Physics of thin films, vol 8. Academic, New York, pp 99–168Google Scholar
  28. 28.
    Meiksin ZH, Hudzinski RA (1967) A theoretical study of the effect of elastic strain on the electrical resistance of thin metal films. J Appl Phys 38(11):4490–4494ADSGoogle Scholar
  29. 29.
    Neugebauer CA (1960) Tensile properties of thin, evaporated gold films. J Appl Phys 31(6):1096–1101ADSGoogle Scholar
  30. 30.
    Noskova NI, Volkova EI (2001) In situ study of deformation of nanocrystalline copper. Phys Metals Metallography 91(6):629–635Google Scholar
  31. 31.
    Odnodvorets LV, Protsenko SI, Chornous AM, Protsenko IYu (2007) Effect tenzochutlyvosti v metalevykh plivkovykh materialakh. Usp Fiz Met 8(2):109–156Google Scholar
  32. 32.
    Odnodvorets L, Protsenko S, Synashenko O, Velykodnyi D Protsenko I (2009) Electrophysical properties of Ni/V and Cr/Fe multilayer films. Cryst Res Technol 44(1):74–81Google Scholar
  33. 33.
    Parker RL, Krinsky A (1963) Electrical resistance-strain characteristics of thin evaporated metal films. J Appl Phys 34(9):2700–2708ADSGoogle Scholar
  34. 34.
    Pozdnyakov VA, Glezer AM (2002) Structural mechanisms of plastic deformation in nanocrystalline materials. Phys Solid State 44(4):732–737ADSGoogle Scholar
  35. 35.
    Protsenko SI (2009) Magnetodeformation effect in thin metal films. J Nano Electron Phys 1(2):5–7Google Scholar
  36. 36.
    Protsenko SI, Chornous AM (2003) Doslidgennya i prognoz tenzorezystyvnykh vlastyvostei plivkovykh system na osnovi Cr, Cu i Sc. Metallophyzika i noveishie technologii 25(5):587–601Google Scholar
  37. 37.
    Protsenko IYu, Odnodvorets LV, Chornous AM (1999) Electroconductivity and tensosensibility of multilayer films. Met Phys Adv Tech 18:47–59Google Scholar
  38. 38.
    Protsenko SI, Cheshko IV, Velykodnyi DV, Pazukha IM, Odnodvorets LV, Protsenko IYu, Synashenko OV (2007) Structurno-fazovyi stan, stabil’nist’ interfeisiv ta electrofizychni vlastyvosti dvosharovykh plivkovykh system. Usp Fiz Met 8(4):247–278Google Scholar
  39. 39.
    Protsenko SI, Velykodnyi DV, Kheraj VA, Desai MS, Panchal CJ, Protsenko IYu (2009) Electrophysical properties of Cu/Cr and Fe/Cr film systems within elastic and plastic deformation range. J Mater Sci 44(18):4905–4910ADSGoogle Scholar
  40. 40.
    Protsenko SI, Synashenko OV, Zabila Y, Marzalek M (2011) Diffusion processes in nanoscale two-layer film systems based on Fe and Cu or Fe and Cr. J Surf Invest 5(4):787–790Google Scholar
  41. 41.
    Protsenko IYu, Odnodvorets LV, Tyschenko KV, Shumakova MO (2013) Features strain properties anomalous small of strain coefficient. J Mech Eng Technol 1(1):34–39Google Scholar
  42. 42.
    Rajanna K, Nayak MM (2000) Strain sensitivity and temperature behavior of invar alloy films. Mat Sci Eng B B77:288–292Google Scholar
  43. 43.
    Sadaiyandi K (2009) Size dependent Debye temperature and mean square displacements of nanocrystalline Au, Ag and Al. Mater Chem Phys 115:703–706Google Scholar
  44. 44.
    Sharma BK, Jain N, Srivastava R (1983) Strain coefficient of resistivity in thin metallic films. Helvetica Phys Acta 56:1093–1097Google Scholar
  45. 45.
    Synashenko OV, Tkach OP, Buryk IP, Odnodvorets LV, Protsenko SI, Shumakova NI (2009) Magnetoresistive properties of multilayer nanodimensional film systems. Probl Atomic Sci Technol 6:169–174Google Scholar
  46. 46.
    Tellier CR, Tosser AJ (1982) Size effects in thin films. ESPS, Amsterdam, 309 pGoogle Scholar
  47. 47.
    Tillier CR (1985) Effect of defect structure on the electrical conduction mechanism in metallic thin films. J Mater Sci 20(6):1901–1919ADSGoogle Scholar
  48. 48.
    Tkach OP, Odnodvorets LV, Protsenko SI, Velykodnyi DV, Tyschenko KV, Protsenko IYu (2010) Mechanical properties of micron and nanodimensional metal films. J Nano Electron Phys 2(1):22–29Google Scholar
  49. 49.
    Tyschenko KV, Odnodvorets LV, Protsenko IYu (2012) Peculiarities of deformation dependence of the strain coefficient in metal films. Pramana—J Phys (in press)Google Scholar
  50. 50.
    Tyschenko KV, Pazukha IM, Shabelnyk TM, Protsenko IYu (2013) Electrophysical properties on nanocrystalline platinum thin films. J Nano Electron Phys 5(1) doi:01029-1-01029-5Google Scholar
  51. 51.
    Wang WL, Liao KJ, Hu CG (2003) Study on piezoresistive effect of diamond films under magnetic field. Sens Aсtuators A 108:55–58Google Scholar
  52. 52.
    Warkusz F (1980) Electrical and mechanical properties of thin metal films: size effects. Progr Surf Sci 10(3):287–382ADSGoogle Scholar
  53. 53.
    Witt GR (1974) Some effect of strain and temperature on the resistance of thin gold-glass cermet films. Thin Solid Films 22:133–156ADSGoogle Scholar
  54. 54.
    Zabila EO, Protsenko IYu (2005) Method of studying the tensoresistive properties of chrome films at relatively small and large deformations. Ukr J Phys 50(7):727–734Google Scholar
  55. 55.
    Zakharenko NI, Semen’ko MP (2007) Vliyanie magnitnogo polya na tensoresistivnyi effect v amorphnykh splavakh na osnovi zheleza. Phys Metals Metallography 104(2):150–154ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Serhyi I. Protsenko
    • 1
    Email author
  • Larysa V. Odnodvorets
    • 1
  • Ivan Yu. Protsenko
    • 1
  1. 1.Department of Applied PhysicsSumy State UniversitySumyUkraine

Personalised recommendations