Advertisement

Two-Dimensional Spin-FET Transistor

  • A. BoudineEmail author
  • L. Kalla
  • K. Benhizia
  • M. Zaabat
  • A. Benaboud
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

This work is devoted to the study of spin-polarized transport in semiconductors as a new type of current transmission in semiconductor devices; this allows us to elaborate a 2deg model for the so-called spin-polarized field effect transistor (spin-FET). Spin-FET is a type of high-electron-mobility transistor (HEMT) wherein a spin-polarized current flow through a semiconductor channel between a ferromagnetic source and a drain and the carrier spin in the semiconductor channel can be modulated by a gate voltage and/or a magnetic field. A modification of the magnetic orientation of the source or drain exchange transistor properties. In this chapter, we get the expression of drain current and the associated transconductance in the function of orientations of the spin of electrons at the end of the canal and the magnetization of the drain contact, taking into account the possibility to control the current through the grid voltage. The model is elaborated in the quantum framework, taking into account the spin–orbit (Rashba coupling) interaction at two dimensions.

Keywords

Spin polarized transport Spintronic Spinfet Semiconductor Quantum information 2deg spin transport Spin- orbit Rashba Spin precesion Datta–Das transistor Spin magnetism in semiconductor Drain spin current Ballistic current Ferromagnetic contact metal-semiconductor One-dimensional model for spinfet Bidimensional model for spinfet Quantum wire in spinfet 

References

  1. 1.
    Prinz GA (1995) Spin-polarized transport. Phys Today 48:58CrossRefGoogle Scholar
  2. 2.
    Prinz GA (1999) Magnetoelectronics applications. J Magn Magn Mater 200(1–3):57–68CrossRefADSGoogle Scholar
  3. 3.
    Rashba EI (1960) Properties of semiconductors with an extremum loop, I/Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov Phys Solid State 2:1109Google Scholar
  4. 4.
    Thibaut W (2000) Etude du transport d’électrons polarisés en spin dans les hétéro-structures métal ferromagnétique/semi-conducteur pour l’obtention de nouveaux composants électroniques Thèse de doctorat soutenance enGoogle Scholar
  5. 5.
    Bournel A (2000) Magnéto électronique dans des dispositifs à semi-conducteurs. Ann Phys Fr 25(1):1–176CrossRefADSGoogle Scholar
  6. 6.
    Wolf SA et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488CrossRefADSGoogle Scholar
  7. 7.
    Datta S, Das B (1990) Electronic analog of the electro—optic modulator. Appl Phys Lett 56(7):665CrossRefADSGoogle Scholar
  8. 8.
    Das B, Miller DC, Datta S (1989) Evidence for spin splitting in InxGa1-xAs/In0.52Al0.48As heterostructures as B®0. Phys Rev B 39(2):1411CrossRefADSGoogle Scholar
  9. 9.
    Landau LD, Lifshitz EM (1997) Quantum mechanics. Butterworth-Heinemann, OxfordGoogle Scholar
  10. 10.
    Bychkov Y, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C 17:6039–6045CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Boudine
    • 1
    Email author
  • L. Kalla
    • 1
  • K. Benhizia
    • 2
  • M. Zaabat
    • 1
  • A. Benaboud
    • 1
  1. 1.Active Devices and Materials Laboratory, Faculty of Exact Sciences and Nature and Life SciencesLarbi Ben M’hidi UniversityOum El BouaghiAlgeria
  2. 2.Université Constantine 1ConstantineAlgérie

Personalised recommendations