Advertisement

Structural, Optical, and Photocatalytic Properties of Quasi-One-Dimensional Nanocrystalline ZnO, ZnOC:nC Composites, and C-doped ZnO

  • E. V. ShalaevaEmail author
  • O. I. Gyrdasova
  • V. N. Krasilnikov
  • M. A. Melkozerova
  • I. V. Baklanova
  • L. Yu. Buldakova
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

Various thermolysis rotes of zinc glicolate complexes are considered for the synthesis of quasi-one-dimensional nanostructured aggregates ZnO and Zn–O–C used as photocatalysts. Structural features of quasi-one-dimensional aggregates Zn–O–C and ZnO are investigated in detail. Transmission electron microscopy, Raman spectroscopy, and electron paramagnetic resonance spectroscopy methods demonstrate that the aggregates Zn–O–C have either composite structure (ZnO crystallites in amorphous carbon matrix) or a C-doped ZnO single-phase structure depending on heat treatment conditions, and that all the aggregates exhibit as a rule a tubular morphology, a nanocrystalline structure with a high specific surface area, and a high concentration of singly charged oxygen vacancies. The mechanism of the nanocrystalline structure formation is discussed and the effect of thermolysis condition on the formation of the textured structure of aggregates is investigated. The results of examination of the photocatalytic and optical absorption properties of the synthesized aggregates are presented. The photocatalytic activity for the hydroquinone oxidation reaction under ultraviolet and visible light increases in the series: the reference ZnO powder, quasi-one-dimensional ZnO, quasi-one-dimensional aggregates C-doped ZnO, and this tendency correlates with the reduction of the optical gap width. As a result of our studies, we have arrived at an important conclusion that thermal treatment of ZnO:nC composites allows a C-doped ZnO with high catalytic activity. This increasing photoactivity of C-doped ZnO aggregates is attributed to the optimal specific surface area and electron-energy spectrum restructuring to be produced owing to the presence of singly charged oxygen vacancies and carbon dissolved in the ZnO lattice.

Keywords

Photocatalytic Activity High Specific Surface Area Zinc Oxide Nanocrystalline Structure Thermolysis Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project 12−03-00453-a). The authors are also grateful to the Ural Branch of RAS for the support of this study through the regional programs (12-U-3−1009).

References

  1. 1.
    French SA, Sokol AA, Bromley ST, Richard C et al (2001) From CO2 to methanol by hybrid QM/MM embedding. Angew Chem Int Ed Engl 40:4437–4440CrossRefGoogle Scholar
  2. 2.
    Byrappa K, Subramani AK, Ananda S et al (2006) Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull Mater Sci 29:433–438CrossRefGoogle Scholar
  3. 3.
    Chen C, Liu J, Liu P, Yu B (2011) Investigation of photocatalytic degragation of methyl orange by using nano-sized ZnO catalysts. Adv Chem Eng Sci 1:9–14. doi:10.4236/aces.2011.11.11002CrossRefGoogle Scholar
  4. 4.
    Anandan S, Vinu A, Mori T, Gokulakrishnan N, Srinivasu P et al (2007) Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catal Commun 8:1377–1382. doi:10.1016/j.catcom.2006.12.001CrossRefGoogle Scholar
  5. 5.
    Yassıtepe E, Yatmaz HC, Öztürk C et al (2008) Photocatalytic efficiency of ZnO plates in degradation of Azo dye solutions. J Photochem Photobiol A 198(1):1–6. doi:10.1016/j.jphotochem.2008.02.007CrossRefGoogle Scholar
  6. 6.
    Yu JG, Yu XX (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42:4902–4907. doi:10.1021/es800036nADSCrossRefGoogle Scholar
  7. 7.
    Fox MA, Dubay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357CrossRefGoogle Scholar
  8. 8.
    Wang J, Liu P, Fu X et al (2009) Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes. Langmuir 25:1218–1223CrossRefGoogle Scholar
  9. 9.
    Strunk J, Kähler K, Xia X, Muhler M (2009) The surface chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol synthesis. Surf Sci 603:1776–1783ADSCrossRefGoogle Scholar
  10. 10.
    Polarz S, Strunk J, Ischenko V, Maurits WE et al (2006) On the role of oxygen defects in the catalytic performance of zinc oxide. Angew Chem Int Ed Engl 45:2965–2969CrossRefGoogle Scholar
  11. 11.
    Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotech 5(10):1561–1573CrossRefGoogle Scholar
  12. 12.
    Shulin JI, Changhui Y (2008) Synthesis, growth mechanism, and applications of zinc oxide nanomaterials. J Mater Sci Technol 24(4):457–472CrossRefGoogle Scholar
  13. 13.
    Wang X, Song J, Wang ZL (2007) Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J Mater Res 17:711–720Google Scholar
  14. 14.
    Suzuki K, Inoguchi M, Kageyama K et al (2009) Well-crystallized zinc oxide quantum dots with narrow size distribution. J Nanopart Res 11:1349–1360. doi:10.1007/s11051- 008-9521xCrossRefGoogle Scholar
  15. 15.
    Li S, Zhang X, Yan B, Yu T (2009) Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method. Nanotechnology. doi:10.1088/0957-4484/20/49/495604Google Scholar
  16. 16.
    Kawano T, Uchiyama H, Kiguchi T et al (2009) Epitaxial growth of winding ZnO nanowires on a single-crystalline substrate. J Ceram Soc Jpn 117(3):255–257CrossRefGoogle Scholar
  17. 17.
    Sakamoto N, Ishizuka S, Wakiya N, Suzuki H (2009) Shape controlled ZnO nanoparticle prepared by microwave irradiation method. J Ceram Soc Jpn 117(9):961–963CrossRefGoogle Scholar
  18. 18.
    Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) First-principles study of native point defects in ZnO. Phys Rev B 61:15019–15027ADSCrossRefGoogle Scholar
  19. 19.
    Janotti A, Van de Walle CG (2007) Native point defects in ZnO. Phys Rev B 76:165202–165224ADSCrossRefGoogle Scholar
  20. 20.
    Ansari SA,  KhanMM KalathilSh (2013) Oxygen vacancy induced band gap narrowing of ZnO. Nanoscale 5:9238–9246ADSCrossRefGoogle Scholar
  21. 21.
    Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873CrossRefGoogle Scholar
  22. 22.
    Zhou G, Deng J (2007) Preparation and photocatalytic performance of Ag/ZnO nano-composites. Mater Sci Semicond Process 10:90–96CrossRefGoogle Scholar
  23. 23.
    Xiao Q, Zhang J, Xiao C, Tan X (2007) Photocatalytic decolorization of methylene blue over Zn1−xCoxO under visible light irradiation. Mater Sci Eng B 142:121–125CrossRefGoogle Scholar
  24. 24.
    Ekambaram S, Iikubo Y, Kudo A (2007) Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO. J Alloy Compd 433:237–240CrossRefGoogle Scholar
  25. 25.
    Abdollahi Y, Abdullah AH, Zainal Z, Yusof NA (2011) Synthesis and characterization of manganese doped ZnO nanoparticles. Int J Basic Appl Sci 11(4):62–69Google Scholar
  26. 26.
    Slama R, Ghribi F, Houas A et al (2011) Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder. Thin Solid Films 519:5792–5795ADSCrossRefGoogle Scholar
  27. 27.
    Krasil’nikov VN, Gyrdasova OI, Buldakova LY, Yanchenko MY (2011) Synthesis and photocatalytic properties of low-dimensional cobalt-doped zinc oxide with different crystal shapes. Russ J Inorg Chem 56(2):145–151CrossRefGoogle Scholar
  28. 28.
    Zhang D, Zeng F (2012) Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J Mater Sci 47:2155–2161MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Li L, Wang W, Liu H, Liu X, Song Q, Ren S (2009) First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J Phys Chem C 113:8460–8464CrossRefGoogle Scholar
  30. 30.
    Sobana N, Swaminathan M (2007) Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53. Sol Energy Mater Sol Cells 91:727–734CrossRefGoogle Scholar
  31. 31.
    Byrappa K, Subramani AK, Ananda S et al (2006) Impregnation of ZnO onto activated carbon under hydrothermal conditions and its photocatalytic properties. J Mater Sci 41:1355–1362ADSCrossRefGoogle Scholar
  32. 32.
    Sobana N, Muruganandam M, Swaminathan M (2008) Characterization of Ac-ZnO catalyst and its photocatalytic activity on 4-acetylphenol degradation. Catal Commun 9:262–268CrossRefGoogle Scholar
  33. 33.
    Pulido Melian E, Gonzalez Diaz O, Dona Rodriguez JM et al (2009) ZnO activation by using activated carbon as a support: characterization and photoreactivity. Appl Catal A Gen 364:174–181CrossRefGoogle Scholar
  34. 34.
    Yong-Jin HT, Worsley MA, Baumann TF, Satcher JH (2011) Synthesis of ZnO coated activated carbon aerogel by simple sol-gel route. J Mater Chem 21:330–333Google Scholar
  35. 35.
    Liu X, Pan L, Zhao Q, Lv T, Zhu G et al (2012) UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(IV). Chem Eng J 183:238–243CrossRefGoogle Scholar
  36. 36.
    Liu Y, Hu Y, Zhou M, Qian H, Hu X (2012) Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Appl Catal B Environ 125:425–431CrossRefGoogle Scholar
  37. 37.
    Li X, Wang Q, Zhao Y, Wu W, Chen J, Meng H (2013) Green synthesis and photocatalytic performances for ZnO-reduced graphene oxide nanocomposites. J Colloid Interface Sci 411:69–75CrossRefGoogle Scholar
  38. 38.
    Yu H-F, Chou H-Y (2013) Preparation and characterization of dispersive carbon-coupling ZnO photocatalysts. Powder Technol 233:201–207CrossRefGoogle Scholar
  39. 39.
    Fu H, Xu T, Zhu S, Zhu Y (2008) Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60. Environ Sci Technol 42:8064–8069ADSCrossRefGoogle Scholar
  40. 40.
    Kim D, Hong J (2010) Magnetic property of carbon doped ZnO and X-ray magnetic circular dichroism: a first principles study. J Korean Phys Soc 56(5):1446–1450CrossRefGoogle Scholar
  41. 41.
    Sanjeev KN, Markus EG, Sung S et al (2012) Anisotropic ferromagnetism in carbon-doped zinc oxide from first-principles studies. Phys Rev B. doi:10.1103/PhysRevB.86.054441Google Scholar
  42. 42.
    Mishra DK, Mohapatra J, Sharma MK, Chattarjee R (2013) Carbon doped ZnO: synthesis, characterization and interpretation. J Magn Magn Mater 329:146–152ADSCrossRefGoogle Scholar
  43. 43.
    Deng Y, Wang G, Li N, Guo L (2009) Synthesis and red-shift photoluminescence of single-crystalline ZnO nanowires. J Lumin 129:55–58CrossRefGoogle Scholar
  44. 44.
    Lin C-C, Li Y-Y (2009) Synthesis nanowires by thermal decomposition of zinc acetate dehydrate. Mater Chem Phys 113:334–337Google Scholar
  45. 45.
    Zhang Y, Zhu F, Zhang J, Xia L (2008) Converting layered zinc acetate nanobelts to one-dimensional structured ZnO nanoparticle aggregates and their photocatalytic activity. Nanoscale Res Lett 3:201–204ADSCrossRefGoogle Scholar
  46. 46.
    Vayssieres L, Keis K, Hagfeldt A, Lindquist S-E (2001) Three-dimensional array of highly oriented crystalline microtubes. Chem Mater 13(2):4395–4398CrossRefGoogle Scholar
  47. 47.
    Shen L, Bao N, Yanagisawa K et al (2007) Organic molecule-assisted hydrothermal self-assembly of sized-controlled tubular ZnO nanostructures. J Phys Chem C 111:7280–7287CrossRefGoogle Scholar
  48. 48.
    Yu Q, Fu W, Yu C, Yang H et al (2007) Fabrication and optical properties of large-scale ZnO nanotube budles via a simple solution route. J Phys Chem C 111:17521–17526CrossRefGoogle Scholar
  49. 49.
    Brahma S, Rao KJ, Srinivasarao S (2010) Rapid growth of nanotubes and nanorods of wurtzite ZnO through microwave-radiation of metalorganic complex of zinc and a surfactant in solution. Bull Mater Sci 33(2):89–95CrossRefGoogle Scholar
  50. 50.
    Liu J, Guo Z, Meng F et al (2009) Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5 (en = ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection. Nanotechnology. doi:10.1088/0957-4484/20/12/125501Google Scholar
  51. 51.
    Zhu J, Liu H, Liu X, Wang X et al (2009) A convenient method for preparing shape-controlled ZnO nanocrystals in a polyol/water mixture system without surfactants. J Wuhan Univ Technol-Mater Sci Ed 24(1):30–33. doi:10.1007/s111595 - 009-1030-yMathSciNetCrossRefGoogle Scholar
  52. 52.
    Zhang J, Sun L, Liao C, Yan C (2002) A simple route towards tubular ZnO. Chem Commun. doi:10.1039/B108863GGoogle Scholar
  53. 53.
    Li L, Pan S, Dou X, Zhu Y, Huang X et al (2007) Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes. J Phys Chem C 111:7288–7291CrossRefGoogle Scholar
  54. 54.
    Zhang J, Zhu P, Li Z, Chen J et al (2008) Fabrication of polycrystalline tubular ZnO via a modified ultrasonically assisted two-step polyol process and characterization of the nanotubes. Nanotechnology. doi:10.1088/0957-4484/19/16/165605Google Scholar
  55. 55.
    Krasil’nikov VN, Shtin AP, Gyrdasova OI, Polyakov EV, Shveikin GP (2008) Synthesis and properties of titanium glycolate Ti(OCH2CH2O)2. Russ J Inorg Chem 53(7):1065–1069CrossRefGoogle Scholar
  56. 56.
    Krasil’nikov VN, Shtin AP, Gyrdasova OI, Baklanova IV, Perelyaeva LA (2008) The titanium and vanadyl glycolates as precursors of titanium and vanadium oxide for high dispersed and nanosized extended objects. Nanotechnol Russ 3(1–2):109–113Google Scholar
  57. 57.
    Jiang X, Wang Y, Herricks T, Xia Y (2004) Ethylene-glycol-mediated synthesis of metal oxide nanowires. J Mater Chem 14:695–703Google Scholar
  58. 58.
    Melkozerova MA, Krasil’nikov VN, Gyrdasova OI, Zabolotskaya EV, Shalaeva EV, Samigullina RF (2012) Nature of defects in nanocrystalline zinc oxide with particles of tubular morphology. Theor Exp Chem 48(3):149–152CrossRefGoogle Scholar
  59. 59.
    Yang B, Kumar A, Upia N, Feng P, Katiyar RS (2010) Low-temperature synthesis and Raman scattering of Mn-doped ZnO nanopowders. J Raman Spectrosc 41:88–92ADSCrossRefGoogle Scholar
  60. 60.
    Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B. doi:10.1103/PhysRevB.64.075414Google Scholar
  61. 61.
    Chu PK, Li L (2006) Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 96:253–277Google Scholar
  62. 62.
    Gysdasova OI, Krasil’nikov VN, Shalaeva EV, Buldakova LY, Yanchenko MY, Bamburov VG (2010) Synthesis, microstructure, and photocatalytic characteristic of quasi-one-dimensional zinc oxide doped with d-elements. Dokl Chem 434(1):211–213CrossRefGoogle Scholar
  63. 63.
    Gyrdasova OI, Krasilnikov VN, Shalaeva EV, Kuznetsov MV, Tyutynnik AP (2012) Synthesis and structure of quasi-one-dimensional zinc oxide doped with manganese. Russ J Inorg Chem 57(1):72–78CrossRefGoogle Scholar
  64. 64.
    Gyrdasova OI, Krasil’nikov VN, Melkozerova MA, Shalaeva EV, Zabolotskaya EV et al (2012) Synthesis, microstructure, and native defects of photoactive Zn1−xCuxO solid solutions (0 ≤ x≤0.1) with tubular aggregates. Dokl Chem 447:258–261CrossRefGoogle Scholar
  65. 65.
    Melkozerova MA, Krasil’nikov VN, Gyrdasova OI, Shalaeva EV, Baklanova IV et al (2013) Effect of doping with 3d elements (Co, Ni, Cu) on the intrinsic defect structure and photocatalytic properties of nanostructured ZnO with tubular morphology of aggregates. Phys Solid State 55(12):2459–2465ADSCrossRefGoogle Scholar
  66. 66.
    Kang HS, Kim JW, Lim SH, Chang HW, Kim GH et al (2006) Investigation on the variation of green, yellow, and orange emission properties of ZnO thin film. Superlattices Microstruct 39:193–201ADSCrossRefGoogle Scholar
  67. 67.
    Iza DC, Muñoz-Rojas D, Quanxi J, Swartzentruber B, MacManus-Driscoll JL (2012) Tunning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells. Nanoscale Res Lett. doi:10.1186/1556-276X-7- 655Google Scholar
  68. 68.
    Park JW, Kim DH, Choi S-H, Lee M, Lim D (2010) The role of carbon in ZnO. J Korean Phys Soc 57(6):1482–1485CrossRefGoogle Scholar
  69. 69.
    Vlasenko LS (2009) Point defects in ZnO: electron paramagnetic resonance study. Phys B 404:4774–4778ADSCrossRefGoogle Scholar
  70. 70.
    Jakes P, Erdem E (2011) Finite size effects in ZnO nanoparticles: an electron paramagnetic resonance (EPR) analysis. Phys Status Solidi RRL 5(2):56–58Google Scholar
  71. 71.
    Vlasenko LS (2010) Magnetic resonance studies of intrinsic defects in ZnO: oxygen vacancy. Appl Magn Reson 39:103–111CrossRefGoogle Scholar
  72. 72.
    Kasai PH (1963) Electron spin resonance studies of donor and acceptors in ZnO. Phys Rev 130(3):989–995ADSCrossRefGoogle Scholar
  73. 73.
    Pöppl A, Völkel G (1991) ESR and photo-ESR investigations of zinc vacancies and interstitial oxygen ions in undoped ZnO ceramics. Phys Status Solidi A 125:571–581ADSCrossRefGoogle Scholar
  74. 74.
    Galland D, Herve A (1974) Temperature dependence of the ESR spectrum of the zinc vacancy in ZnO. Solid State Commun 14(10):953–956ADSCrossRefGoogle Scholar
  75. 75.
    Ekimov AI, Efros AL, Onushchenko AA (1985) Quantum size effect in semiconductor microcrystals. Solid State Commun 56:921–924ADSCrossRefGoogle Scholar
  76. 76.
    Lin K-F, Cheng H-M, Hsu H-C, Lin L-J, Hsieh W-F (2005) Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem Phys Lett 409:208–211ADSGoogle Scholar
  77. 77.
    Savarimuthu PA, Lee LI, Kim JK (2007) Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition. Appl Phys Lett 90:103107–103109CrossRefGoogle Scholar
  78. 78.
    Lu JG, Ye ZZ, Zhang YZ, Liang QL, Fujita S et al (2006) Self-assembled ZnO quantum dots with tunable optical properties. Appl Phys Lett 89:023122–023124ADSCrossRefGoogle Scholar
  79. 79.
    Soosen SM, Koshy J, Chandran A, George KC (2010) Optical phonon confinement in ZnO nanorods and nanotubes. Indian J Pure Appl Phys 48:703–708Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • E. V. Shalaeva
    • 1
    Email author
  • O. I. Gyrdasova
    • 1
  • V. N. Krasilnikov
    • 1
  • M. A. Melkozerova
    • 1
  • I. V. Baklanova
    • 1
  • L. Yu. Buldakova
    • 1
  1. 1.Institute of Solid State Chemistry UB RASEkaterinburgRussian Federation

Personalised recommendations