Skip to main content

Magnetic Properties of Nanoparticle RMnO3 (R=Pr, Nd, and Tb) Compounds

  • Conference paper
  • First Online:
Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications

Abstract

The effect of particle size on the magnetic properties of RMnO3 (R = Pr, Nd, and Tb) has been investigated by magnetometric and X-ray and neutron diffraction methods. The samples were obtained by a sol–gel method. The investigated compounds with a grain size < 100 nm crystallize in the orthorhombic crystal structure described by the Pnma space group. The crystal parameters for the nanoparticle compounds are slightly smaller than those for bulk materials Low temperature magnetic and neutron diffraction data indicate the difference in their magnetic properties. For the nanoparticle PrMnO3 (annealed at 900 °C) and NdMnO3 samples, the magnetic ordering of CxFy-type exists in Mn sublattice while in PrMnO3 annealed at 800 °C it is missing. The Nd moments order below T ≈ 13 K according to a ferromagnetic arrangement of Fy-type.

For the nanoparticle TbMnO3 compounds, the magnetic ordering in the Mn and Tb sublattices is described by propagation vector k = (kx, 0, 0) with the different values of the kx component for respective sublattices. The magnetic ordering in the Mn sublattice is described by a collinear Cx mode down to 1.6 K. Decreasing of temperature below 10 K results in magnetic ordering of the Tb sublattice (FyAz mode). The observed broadening of Bragg peaks connected to the Tb sublattice suggests the cluster-like character of its magnetic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Quintela MA, Hueso LE, Rivas J, Rivadulla F (2003) Intergranular magnetoresistance in nanomanganites. Nanotechnology 14:212. doi:10.1088/0957-4484/14/2/322

    Google Scholar 

  2. Kimura T, Ishihara S, Shintarni H, Arima T, Takahaski KT, Ishizaka K, Tokura Y (2003) Distorted perovskite with eg1 configuration as a frustrated spin system. Phys Rev B 68:060403. doi:10.1103/PhysRevB.68.060403

    Article  Google Scholar 

  3. Dyakonov V, Bażela W, Duraj R, Dul M, Kravchenko Z, Zubow E, Dyakonov K, Baran S, Szytuła A, Szymczak H (2013) Grain size effect on magnetic properties of REMnO3 (\(\rm RE=\rm Pr\), Nd). Low Temp Phys 39:452. doi:10.1063/1.4801432

    Article  Google Scholar 

  4. Dyakonov V, Szytuła A, Szymczak R, Zubov E, Szewczyk A, Kravchenko Z, Bażela W, Dyakonov K, Zarzycki A, Varyukhin V, Szymczak H (2012) Phase transitions in TbMnO3 manganites. Low Temp Phys 38:216. doi:10.1063/1.3691530

    Google Scholar 

  5. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter 192:55. doi:10.1016/0921-4526(93)90108-I

    Google Scholar 

  6. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  7. Bertaut EF (1968) Representation analysis of magnetic structures. Acta Crystallogr Sect A 24:217. doi:10.1107/S0567739468000306

    Google Scholar 

  8. Baran S, Dyakonov V, Hofmann T, Hoser A, Penc B, Kravchenko Z, Szytuła A (2013) Neutron diffraction studies of nanoparticle RMnO3 compounds (R=Pr, Nd). J Magn Magn Mater 344:68. doi:10.1-16/j.jmmm.2013.05.014

    Google Scholar 

  9. Muñoz A, Alonso JA, Martinez-Lopez MJ, Fernandez-Diaz MT (2000) Magnetic structure evolutions of NdMnO3 derived from neutron diffraction data. J Phys: Condens Matter 12:1361

    Google Scholar 

  10. Bażela W, Dul M, Dyakonov V, Gondek Ł, Hoser A, Hofmann J-U, Penc B, Szytuła A, Kravchenko Z, Nosalev I, Zarzycki A (2012) Magnetic and neutron diffraction studies of the polycrystalline and nanoparticle TbMnO3. Acta Physi Pol A 122:384

    Google Scholar 

  11. Balcells L, Fontcuberta J, Martínez B, Obradors X (1998) High-field magnetoresistance at interfaces in manganese perovskites. Phys Rev B 58:R14697. doi:10.1103/PhysRevB.58.R14697

    Article  Google Scholar 

  12. Bertaut EF (1963) Spin configurations of ionic structures: theory and practice. In: Rado GT, Shul H (eds) Magnetism, a treatise on modern theory and materials, vol III. Academic Press, New York, p 149

    Google Scholar 

  13. Brinks HW, Rodriguez-Carvajal J, Fjellåg H, Kjakshus A, Hauback BC (2001) Crystal and magnetic structure of orthorhombic HoMnO3. Phys Rev B 63:094411. doi:10.1103/ PhysRevB.63.094411

    Google Scholar 

  14. Senff D, Link P, Hradil K, Hiess A, Regnault LP, Sidis Y, Aliouane N, Argyrion DN, Braden M (2007) Magnetic excitations in multiferroic TbMnO3: evidence for a hybridized soft mode. Phys Rev Lett 98:137206. doi:10.1103/PhysRevLett. 98.137206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiesława Bażela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bażela, W. et al. (2015). Magnetic Properties of Nanoparticle RMnO3 (R=Pr, Nd, and Tb) Compounds. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_23

Download citation

Publish with us

Policies and ethics