Advertisement

Magnetic Properties of Nanoparticle RMnO3 (R=Pr, Nd, and Tb) Compounds

  • Wiesława BażelaEmail author
  • Andrzej Szytuła
  • Stanisław Baran
  • Bogusław Penc
  • Marcin Dul
  • Ryszard Duraj
  • Zinaiida Kravchenko
  • Eduard Zubov
  • Konstantin Dyakonov
  • Jens-Uwe Hoffmann
  • Tommy Hofmann
  • Andreas Hoser
  • Volodymyr Dyakonov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

The effect of particle size on the magnetic properties of RMnO3 (R = Pr, Nd, and Tb) has been investigated by magnetometric and X-ray and neutron diffraction methods. The samples were obtained by a sol–gel method. The investigated compounds with a grain size < 100 nm crystallize in the orthorhombic crystal structure described by the Pnma space group. The crystal parameters for the nanoparticle compounds are slightly smaller than those for bulk materials Low temperature magnetic and neutron diffraction data indicate the difference in their magnetic properties. For the nanoparticle PrMnO3 (annealed at 900 °C) and NdMnO3 samples, the magnetic ordering of CxFy-type exists in Mn sublattice while in PrMnO3 annealed at 800 °C it is missing. The Nd moments order below T ≈ 13 K according to a ferromagnetic arrangement of Fy-type.

For the nanoparticle TbMnO3 compounds, the magnetic ordering in the Mn and Tb sublattices is described by propagation vector k = (kx, 0, 0) with the different values of the kx component for respective sublattices. The magnetic ordering in the Mn sublattice is described by a collinear Cx mode down to 1.6 K. Decreasing of temperature below 10 K results in magnetic ordering of the Tb sublattice (FyAz mode). The observed broadening of Bragg peaks connected to the Tb sublattice suggests the cluster-like character of its magnetic structure.

Keywords

Neutron Diffraction Effective Magnetic Moment Neutron Diffraction Data Neutron Diffraction Pattern Nanoparticle Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    López-Quintela MA, Hueso LE, Rivas J, Rivadulla F (2003) Intergranular magnetoresistance in nanomanganites. Nanotechnology 14:212. doi:10.1088/0957-4484/14/2/322Google Scholar
  2. 2.
    Kimura T, Ishihara S, Shintarni H, Arima T, Takahaski KT, Ishizaka K, Tokura Y (2003) Distorted perovskite with eg1 configuration as a frustrated spin system. Phys Rev B 68:060403. doi:10.1103/PhysRevB.68.060403CrossRefGoogle Scholar
  3. 3.
    Dyakonov V, Bażela W, Duraj R, Dul M, Kravchenko Z, Zubow E, Dyakonov K, Baran S, Szytuła A, Szymczak H (2013) Grain size effect on magnetic properties of REMnO3 (\(\rm RE=\rm Pr\), Nd). Low Temp Phys 39:452. doi:10.1063/1.4801432CrossRefGoogle Scholar
  4. 4.
    Dyakonov V, Szytuła A, Szymczak R, Zubov E, Szewczyk A, Kravchenko Z, Bażela W, Dyakonov K, Zarzycki A, Varyukhin V, Szymczak H (2012) Phase transitions in TbMnO3 manganites. Low Temp Phys 38:216. doi:10.1063/1.3691530Google Scholar
  5. 5.
    Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter 192:55. doi:10.1016/0921-4526(93)90108-IGoogle Scholar
  6. 6.
    Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, ReadingGoogle Scholar
  7. 7.
    Bertaut EF (1968) Representation analysis of magnetic structures. Acta Crystallogr Sect A 24:217. doi:10.1107/S0567739468000306Google Scholar
  8. 8.
    Baran S, Dyakonov V, Hofmann T, Hoser A, Penc B, Kravchenko Z, Szytuła A (2013) Neutron diffraction studies of nanoparticle RMnO3 compounds (R=Pr, Nd). J Magn Magn Mater 344:68. doi:10.1-16/j.jmmm.2013.05.014Google Scholar
  9. 9.
    Muñoz A, Alonso JA, Martinez-Lopez MJ, Fernandez-Diaz MT (2000) Magnetic structure evolutions of NdMnO3 derived from neutron diffraction data. J Phys: Condens Matter 12:1361Google Scholar
  10. 10.
    Bażela W, Dul M, Dyakonov V, Gondek Ł, Hoser A, Hofmann J-U, Penc B, Szytuła A, Kravchenko Z, Nosalev I, Zarzycki A (2012) Magnetic and neutron diffraction studies of the polycrystalline and nanoparticle TbMnO3. Acta Physi Pol A 122:384Google Scholar
  11. 11.
    Balcells L, Fontcuberta J, Martínez B, Obradors X (1998) High-field magnetoresistance at interfaces in manganese perovskites. Phys Rev B 58:R14697. doi:10.1103/PhysRevB.58.R14697CrossRefGoogle Scholar
  12. 12.
    Bertaut EF (1963) Spin configurations of ionic structures: theory and practice. In: Rado GT, Shul H (eds) Magnetism, a treatise on modern theory and materials, vol III. Academic Press, New York, p 149Google Scholar
  13. 13.
    Brinks HW, Rodriguez-Carvajal J, Fjellåg H, Kjakshus A, Hauback BC (2001) Crystal and magnetic structure of orthorhombic HoMnO3. Phys Rev B 63:094411. doi:10.1103/ PhysRevB.63.094411Google Scholar
  14. 14.
    Senff D, Link P, Hradil K, Hiess A, Regnault LP, Sidis Y, Aliouane N, Argyrion DN, Braden M (2007) Magnetic excitations in multiferroic TbMnO3: evidence for a hybridized soft mode. Phys Rev Lett 98:137206. doi:10.1103/PhysRevLett. 98.137206CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wiesława Bażela
    • 1
    Email author
  • Andrzej Szytuła
    • 2
  • Stanisław Baran
    • 2
  • Bogusław Penc
    • 2
  • Marcin Dul
    • 1
  • Ryszard Duraj
    • 1
  • Zinaiida Kravchenko
    • 3
  • Eduard Zubov
    • 3
  • Konstantin Dyakonov
    • 5
  • Jens-Uwe Hoffmann
    • 6
  • Tommy Hofmann
    • 6
  • Andreas Hoser
    • 6
  • Volodymyr Dyakonov
    • 3
    • 4
  1. 1.Institute of PhysicsCracow University of TechnologyKrakówPoland
  2. 2.M. Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  3. 3.A. A. Galkin Donetsk Physico-Technical InstituteNational Academy of Sciences of UkraineDonetskUkraine
  4. 4.Institute of Physics, PASWarszawaPoland
  5. 5.A. F. Ioffe Physico-Technical Institute RANSt.-PetersburgRussia
  6. 6.Helmholtz-ZentrumBerlin für Materialien und Energie GmbHBerlinGermany

Personalised recommendations