Advertisement

Application of Carbon Nanotubes for Plant Genetic Transformation

  • Olga M. Burlaka
  • Yaroslav V. Pirko
  • Alla I. Yemets
  • Yaroslav B. BlumeEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

In this chapter, the current state of using carbon nanotubes (CNTs; single- and multi-walled) that have attracted great interdisciplinary interest in recent decades due to their peculiar properties for genetic transformation of prokaryotic and eukaryotic cells will be enlightened. The covalent and non-covalent surface chemistry for the CNT functionalization with focus on the potential applications of surface modifications in design of biocompatible CNTs will be discussed. The properties of CNTs that are favorable for biotechnological use and current status of technical approaches that allow the increase in biocompatibility and lower nanotoxicity of engineered CNTs will be described. Decisions proposed by non-covalent surface modification of CNTs will be discussed. Existing data concerning mechanisms of CNT cell entry and factors governing toxicity, cellular uptake, intracellular traffic, and biodegradation of CNTs along with bioavailability of molecular cargoes of loaded CNTs will be discussed. Eco-friendly production of water dispersions of biologically functionalized multi-walled and single-walled CNTs for use as nano-vehicles for the DNA delivery in plant genetic transformation of plants will be described. The background, advantages, and problems of using CNTs in developing of novel methods of genetic transformation, including plant genetic transformation, will be highlighted. Special attention will be paid to the limitations of conventional gene transfer techniques and promising features of CNT-based strategies having improved efficacy, reproducibility, and accuracy along with less time consumption. Issues impeding manipulation of CNTs such as entangled bundle formation, low water solubility, inert properties of pristine CNTs, etc., and ways to solve arising tasks will be overviewed.

Keywords

Covalent Functionalization Pristine CNTs Immobilize Cellulase Plant Genetic Transformation Molecular Cargo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ago H, Petritsch K, Shaffer MSP et al (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11:1281–1285Google Scholar
  2. 2.
    Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1799Google Scholar
  3. 3.
    Albertorio F, Hughes ME, Golovchenko JA, Branton D (2009) Base dependent DNA-carbon nanotube interactions: activation enthalpies and assembly-disassembly control. Nanotechnology 20(39):395101Google Scholar
  4. 4.
    Ali-Boucetta H, Al-Jamal KT, McCarthy D et al (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 4:459–461Google Scholar
  5. 5.
    Allen BL, Kotchey GP, Chen YN et al (2009) Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J Am Chem Soc 131:17194–17205Google Scholar
  6. 6.
    Anastas P, Warner J (1998) Green chemistry: theory and practice. Oxford University, USAGoogle Scholar
  7. 7.
    Arnold MS, Guler MO, Hersam MC, Stupp SI (2005) Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21:4705–4709Google Scholar
  8. 8.
    Baddour CE, Briens C (2005) Carbon nanotube synthesis: a review. Inter J Chem React Eng 3:3–20Google Scholar
  9. 9.
    Balavoine F, Schultz P, Richard C et al (1999) Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew Chem Int Ed 38(13–14):1912–1915Google Scholar
  10. 10.
    Bandow S, Rao AM, Williams KA et al (1997) Purification of single-wall carbon nanotubes by microfiltration. J Phys Chem B 101:8839–8842Google Scholar
  11. 11.
    Becker ML, Fagan JA, Gallant ND et al (2007) Length dependent uptake of DNA wrapped single wall carbon nanotubes. Adv Mater 19:939–945Google Scholar
  12. 12.
    Bekyarova E, Ni Y, Malarkey EB et al (2005) Applications of carbon nanotubes in biotechnology. J Biomed Nanotechnol 1(1):3–17Google Scholar
  13. 13.
    Bhirde A, Patel V, Gavard J et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316Google Scholar
  14. 14.
    Buhro WE, Colvin VL (2003) Semiconductor nanocrystals—shape matters. Nat Mater 2(3):138–139ADSGoogle Scholar
  15. 15.
    Burlaka OM, Pirko YV, Yemets AI, Blume YB (2011) Carbon nanotubes and their applications in plants genetic transformation (In Ukrainian). Nanostruct Mater Sci 2:84–101Google Scholar
  16. 16.
    Burlaka OM, Pirko YV, Yemets AI, Blume YB (2012) Functionalized carbon nanotubes for the delivery of biomolecules into plant cells. In: Abstracts of plant biology congress FESPB/EPSO, 29 July–3 August 2012, Freiburg, GermanyGoogle Scholar
  17. 17.
    Cai D, Mataraza J, Qin Z et al (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2(6):449–454Google Scholar
  18. 18.
    Canas JE, Long M, Nations S et al (2008) Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931Google Scholar
  19. 19.
    Cao Q, Rogers JA (2008) Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res 1:259–272Google Scholar
  20. 20.
    Cha TS, Chen CF, Yee W et al (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434Google Scholar
  21. 21.
    Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839Google Scholar
  22. 22.
    Chen X, Tam UC, Czlapinski JL et al (2006) Interfacing carbon nanotubes with living cells. J Am Chem Soc 128:6292–6293Google Scholar
  23. 23.
    Chen Y, Liu H, Ye T, Kim J, Mao C (2007) DNA-directed assembly of single-wall carbon nanotubes. J Am Chem Soc 129:8696–8697Google Scholar
  24. 24.
    Chen JY, Chen SY, Zhao XR et al (2008a) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785Google Scholar
  25. 25.
    Chen X, Chen J, Deng C et al (2008) Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Talanta 76:763–767Google Scholar
  26. 26.
    Chen JL, Zhu ZH, Ma Q et al (2009) Effects of pre-treatment in air microwave plasma on the structure of CNTs and the activity of Ru/CNTs catalysts for ammonia decomposition. Catal Today 148(1–2):97–102Google Scholar
  27. 27.
    Chen ZY, Liang K, Qiu RX, Luo LP (2011) Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. Ultrasound Med 30:1247–1258Google Scholar
  28. 28.
    Chen J, Chen Q, Ma Q (2012) Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes. J Colloid Interface Sci 370(1):32–38Google Scholar
  29. 29.
    Cheng J (2008) Biocompatibility and properties of carbon nanotubes in the biological systems. Dissertation, City University of Hong KongGoogle Scholar
  30. 30.
    Cheng F, Zhang S, Adronov A et al (2006) Triply fused ZnII-porphyrin oligomers: synthesis, properties, and supramolecular interactions with singlewalled carbon nanotubes (SWNTs). Chem Eur J 12(23):6062–6070Google Scholar
  31. 31.
    Cheng C, Muller KH, Koziol KK et al (2009) Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30:4152–4160Google Scholar
  32. 32.
    Cheng Q, Debnath S, Gregan E, Byrne HJ (2010) Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent. J Phys Chem C 114:8821–8827Google Scholar
  33. 33.
    Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126:15638–15639Google Scholar
  34. 34.
    Chiang YC, Lin WH, Chang YC (2011) The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl Surf Sci 257:2401–2410ADSGoogle Scholar
  35. 35.
    Chowrira GM, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol Biotechnol 5:85–96Google Scholar
  36. 36.
    Clark MD, Subramanian S, Krishnamoorti R (2011) Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J Colloid Interface Sci 354(1):144–151Google Scholar
  37. 37.
    Cooper GM, Hausman RE (2009) The cell: a molecular approach, 5th ed. Sinauer Associates Inc, SunderlandGoogle Scholar
  38. 38.
    D’Souza F, Chitta R, Sandanayaka ASD et al (2007) Supramolecular carbon nanotube-fullerene donor-acceptor hybrids for photoinduced electron transfer. J Am Chem Soc 129:15865–15871Google Scholar
  39. 39.
    Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269Google Scholar
  40. 40.
    Dillon AC, Jones KM, Bekkedahl TA et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379ADSGoogle Scholar
  41. 41.
    Ding K, Hu B, Xie Y et al (2009) A simple route to coat mesoporous SiO2 layer on carbon nanotubes. J Mater Chem 19:3725–3731Google Scholar
  42. 42.
    Dovbeshko GI, Repnytska OP, Obraztsova ED et al (2003) Study of DNA interaction with carbon nanotubes. Semicond Phys Quantum Electron Optoelectron 6(1):105–108Google Scholar
  43. 43.
    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San DiegoGoogle Scholar
  44. 44.
    Dwyer C, Guthold M, Falvo M et al (2002) DNA-functionalized single-walled carbon nanotubes. Nanotechnology 13:601–604ADSGoogle Scholar
  45. 45.
    Ebbesen T, Ajatan A, Hiura H, Tanigaki K (1994) Purification of carbon nanotubes. Nature 367:519–520ADSGoogle Scholar
  46. 46.
    Ehli C, Rahman GMA, Jux N et al (2006) Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc 128:11222–11231Google Scholar
  47. 47.
    Etxeberria E, Gonzalez P, Baroja-Fernandez E, Pozueta-Romero J (2006) Fluid phase endocytic uptake of artificial nano-spheresand fluorescent quantum dots by sycamore cultured cells. Plant Signal Behav 1:196–200Google Scholar
  48. 48.
    Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design. J Am Chem Soc 129(27):8438–8439Google Scholar
  49. 49.
    Fennimore AM, Yuzvinsky TD, Han W-Q et al (2003) Rotational actuators based on carbon nanotubes. Nature 424:408–410ADSGoogle Scholar
  50. 50.
    Fouad M, Kaji N, Jabasini M et al (2008) Nanotechnology meets plant biotechnology: carbon nanotubes deliver DNA and incorporate into the plant cell structure. In: Abstracts of 12th international conference on miniaturized systems for chemistry and life sciences, San Diego, California, USA, 12–16 October, 2008Google Scholar
  51. 51.
    Gandra N, Chiu PL, Li W et al (2009) Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogs. J Phys Chem 113:5182–5185Google Scholar
  52. 52.
    Georgakilas V, Tagmatarchis N, Pantarotto D et al (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 24:3050–3051Google Scholar
  53. 53.
    Goodwin AP, Tabakman SM, Welsher K et al (2009) Phospholipid-dextran with a single coupling point: a useful amphiphile for functionalization of nanomaterials. J Am Chem Soc 131:289–296Google Scholar
  54. 54.
    Guo Z, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mater 10(9):701–703Google Scholar
  55. 55.
    Hamon MA, Itkis ME, Niyogi S et al (2001) Effect of the rehybridization on the electronic structure of single-walled carbon nanotubes. J Am Chem Soc 123:11292–11293Google Scholar
  56. 56.
    Han X, Li Y, Deng Z (2007) DNA-wrapped single walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522Google Scholar
  57. 57.
    Harutyunyan AR, Pradhan BK, Chang J et al (2002) Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B 106:8671–8675Google Scholar
  58. 58.
    Hasegawa T, Fujisawa T, Numata M et al (2004) Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan. Chem Commun 19:2150–2151Google Scholar
  59. 59.
    Hayashimoto A, Li Z, Murai N (1990) A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol 93:857–863Google Scholar
  60. 60.
    Hernadi K, Siska A, Thien-Nga L et al (2001) Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics 141:203–209Google Scholar
  61. 61.
    Herrero MA, Toma FM, Al-Jamal KT et al (2009) Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J Am Chem Soc 131:9843–9848Google Scholar
  62. 62.
    Holder PG, Francis MB (2007) Integration of a self-assembling protein scaffold with water-soluble single-walled carbon nanotubes. Angew Chem Int Ed 46:4370–4373Google Scholar
  63. 63.
    Hu Y, Guo C (2011) Carbon nanotubes and carbon nanotubes/metal oxide heterostructures: synthesis, characterization and electrochemical property. In: Naraghi M (ed) Carbon nanotubes—growth and applications. InTech, Croatia, pp 3–34Google Scholar
  64. 64.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56ADSGoogle Scholar
  65. 65.
    Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168Google Scholar
  66. 66.
    Javey A, Guo J, Wang Q, Lundstrom M, Dai HJ (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657ADSGoogle Scholar
  67. 67.
    Jiang Z, Berg H (1995) Increase of protoplast electrofusion supported by dextran fractions. Bioelectrochem Bioenerg 38:383–387Google Scholar
  68. 68.
    Jiang W, Yu B, Liu W, Hao J (2007) Carbon nanotubes incorporated within lyotropic hexagonal liquid crystal formed in room-temperature ionic liquids. Langmuir 23:8549–8553Google Scholar
  69. 69.
    Joshi PP, Merchant SA, Wang Y, Schmidtke DW (2005) Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal Chem 77:3183–3188Google Scholar
  70. 70.
    Kagan VE, Konduru NV, Feng WH et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359ADSGoogle Scholar
  71. 71.
    Kakkar A, Verma VK (2011) Agrobacterium mediated biotransformation. J Appl Pharm Sci 1(7):29–35Google Scholar
  72. 72.
    Kam NWS, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026Google Scholar
  73. 73.
    Kam NWS, Dai H (2006) Single-walled carbon nanotubes for transport and delivery of biological cargos. Phys Stat Sol 243:3561–3566ADSGoogle Scholar
  74. 74.
    Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851Google Scholar
  75. 75.
    Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605ADSGoogle Scholar
  76. 76.
    Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577–581Google Scholar
  77. 77.
    Kang B, Yu D, Chang S et al (2008) Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells. Nanotechnology 19(37):375103–375111Google Scholar
  78. 78.
    Kang Y, Liu YC, Wang Q et al (2009) On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials 30:2807–2815Google Scholar
  79. 79.
    Karajanagi SS, Yang H, Asuri P et al (2006) Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 22(4):1392–1395Google Scholar
  80. 80.
    Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397Google Scholar
  81. 81.
    Kavakka JS, Heikkinen S, Kilpelainen I et al (2007) Noncovalent attachment of pyro-pheophorbide a to a carbon nanotube. J Chem Commun 5:519–521Google Scholar
  82. 82.
    Kennedy AJ, Hull MS, Steevens JA et al (2008) Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27:1932–1941Google Scholar
  83. 83.
    Kharisov BI, Kharissova OV, Gutierre HL, Mendez UO (2009) Recent advances on the soluble carbon nanotubes. Ind Eng Chem Res 48:572–590Google Scholar
  84. 84.
    Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227Google Scholar
  85. 85.
    Khodakovskaya M, de Silva K, Nedosekin D et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A 108:1028–1033ADSGoogle Scholar
  86. 86.
    Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135Google Scholar
  87. 87.
    Klee H, Horsch R, Rogers S (1987) Agrobacterium-mediated plant transformation and its further applications to plant biology. Ann Rev Plant Physiol 38:467–486Google Scholar
  88. 88.
    Kostarelos K, Lacerda L, Pastorin G et al (2007) A cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotech 2:108–113ADSGoogle Scholar
  89. 89.
    Kraszewski S, Bianco A, Tarek M, Ramseyer C (2012) Insertion of short amino-functionalized single-walled carbon nanotubes into phospholipid bilayer occurs by passive diffusion. PLoS One 7(7):40703. doi:10.1371/journal.pone.0040703ADSGoogle Scholar
  90. 90.
    Kurppa K, Jiang H, Szilvay GR et al (2007) Controlled hybrid nanostructures via protein mediated noncovalent functionalization of carbon nanotubes. Angew Chem Int Ed 46:6446–6449Google Scholar
  91. 91.
    Lacerda L, Raffa S, Prato M et al (2007) Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2:38–43Google Scholar
  92. 92.
    Lacerda L, Russier J, Pastorin G et al (2012) Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 33:3334–3343Google Scholar
  93. 93.
    Lamprecht C, Liashkovich I, Neves V et al (2009) AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20:434001ADSGoogle Scholar
  94. 94.
    Lay CL, Liu HQ, Tan HR, Liu Y (2010) Delivery of paclitaxel by physically loading onto poly(ethylene glycol) PEG-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology 21(6):065101–065111ADSGoogle Scholar
  95. 95.
    Lazzeri PA (1995) Stable transformation of barley via direct DNA uptake. Electroporation- and PEG-mediated protoplast transformation. Methods Mol Biol 49:95–106Google Scholar
  96. 96.
    Li G, Xu H, Huang W et al (2008) A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes. Meas Sci Technol 19:065203ADSGoogle Scholar
  97. 97.
    Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250Google Scholar
  98. 98.
    Lin S, Reppert J, Hu Q et al (2009a) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132Google Scholar
  99. 99.
    Lin C, Fugetsu B, Su Y, Watari F (2009) Studies on toxicity of multiwalled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 30:578–583Google Scholar
  100. 100.
    Liu Y, Wu DC, Zhang WD et al (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure non-covalent immobilization and efficient delivery of DNA. Angew Chem Int Edn 44(30):4782–4785Google Scholar
  101. 101.
    Liu Y, Liang P, Zhang H-Y, Guo D-S (2006) Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small 2:874–878Google Scholar
  102. 102.
    Liu Z, Winters M, Holodniy M, Dai HJ (2007a) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Edn 46:2023–2027Google Scholar
  103. 103.
    Liu Z, Sun X, Nakayama N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56Google Scholar
  104. 104.
    Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660Google Scholar
  105. 105.
    Liu Z, Tabakman S, Welsher K, Dai H (2009a) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120Google Scholar
  106. 106.
    Liu Q, Chen B, Wang Q et al (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010ADSGoogle Scholar
  107. 107.
    Lu Q, Moore JM, Huang G et al (2004) RNA polymer translocation with single-walled carbon nanotubes. Nano Lett 4:2473–2477ADSGoogle Scholar
  108. 108.
    Lu G, Maragakis P, Kaxiras E (2005) Carbon nanotube interaction with DNA. Nano Lett 5(5):897–900Google Scholar
  109. 109.
    Lu F, Gu L, Meziani MJ et al (2009) Advances in bioapplications of carbon nanotubes. Adv Mater 21:139–152Google Scholar
  110. 110.
    Lurquin PF (1997) Gene transfer by electroporation. Mol Biotechnol 7:5–35Google Scholar
  111. 111.
    Matsuura K, Saito T, Okazaki T et al (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett 429:497–502ADSGoogle Scholar
  112. 112.
    Mattos IB, Alves DA, Hollanda LM et al (2011) Effects of multi-walled carbon nanotubes (MWCNT) under Neisseria meningitides transformation process. J Nanobiotechnol 9:53Google Scholar
  113. 113.
    Miaczynska M, Stenmark H (2008) Mechanisms and functions of endocytosis. J Cell Biol 180:7–11Google Scholar
  114. 114.
    Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9(77):3514–3527Google Scholar
  115. 115.
    Mohanpuria P, Rana N, Yadav S (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517Google Scholar
  116. 116.
    Moulton SE, Maugey M, Poulin P, Wallace GG (2007) Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions. J Am Chem Soc 129:9452–9457Google Scholar
  117. 117.
    Murugesan S, Myers K, Subramanian V (2011) Amino-functionalized and acid treated multi-walled carbon nanotubes as supports for electrochemical oxidation of formic acid. Appl Catal B 103:266–274Google Scholar
  118. 118.
    Nagy JI, Maliga P (1976) Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris. Pflanzenphysiol 78:453–544Google Scholar
  119. 119.
    Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163Google Scholar
  120. 120.
    Nakashima N, Okuzono S, Murakami H et al (2003) DNA dissolves single-walled carbon nanotubes in water. Chem Lett 32(5):456–457Google Scholar
  121. 121.
    Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3:1259–1265Google Scholar
  122. 122.
    Neuhaus G, Spangenberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217Google Scholar
  123. 123.
    Nguyen CV, Delzeit L, Cassell AM et al (2002) Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett 2:1079–1081ADSGoogle Scholar
  124. 124.
    Niyogi S, Hu H, Hamon MA et al (2001) Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). J Am Chem Soc 123:733–734Google Scholar
  125. 125.
    Niyogi S, Hamon MA, Hu H et al (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113Google Scholar
  126. 126.
    Numata M, Sugikawa K, Kaneko K, Shinkai S (2008) Creation of hierarchical carbon nanotube assemblies through alternative packing of complementary semi-artificial b-1,3-glucan/carbon nanotube composites. Chem Eur J 14:2398–2404Google Scholar
  127. 127.
    Nunes A, Amsharov N, Guo C et al (2010) Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small 6(20):2281–2291Google Scholar
  128. 128.
    O’Connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596ADSGoogle Scholar
  129. 129.
    Ogoshi T, Inagaki A, Yamagishi T-A, Nakamoto Y (2008) Defection-selective solubilization and chemically-responsive solubility switching of single-walled carbon nanotubes with cucurbit[7]uril. Chem Commun 19:2245–2247Google Scholar
  130. 130.
    Pantarotto D, Briand JP, Prato M, Bianco A (2004a) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 1:16–17Google Scholar
  131. 131.
    Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43:5242–5246Google Scholar
  132. 132.
    Petersen EJ, Zhang LW, Mattison NT et al (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–9856ADSGoogle Scholar
  133. 133.
    Podesta JE, Al-Jamal KT, Herrero MA et al (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5:1176–1185Google Scholar
  134. 134.
    Pogodin S, Baulin VA (2010) Can a carbon nanotube pierce through a phospholipid bilayer? ACS Nano 4(9):5293–5300Google Scholar
  135. 135.
    Porter AE, Gass M, Muller K et al (2007) Direct imaging of single-walled carbon nanotubes in cells. Nature Nanotech 2:713–717ADSGoogle Scholar
  136. 136.
    Porter AE, Gass M, Bendall JS et al (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3:1485–1492Google Scholar
  137. 137.
    Potrykus I (1990) Gene transfer to cereals: an assessment. BioTechnology 8:535–542Google Scholar
  138. 138.
    Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68Google Scholar
  139. 139.
    Prencipe G, Tabakman SM, Welsher K et al (2009) PEG-branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131:4783–4787Google Scholar
  140. 140.
    Qi P, Vermesh O, Grecu M et al (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351ADSGoogle Scholar
  141. 141.
    Raffa V, Ciofani G, Nitodas S et al (2008) Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 46:1600–1610Google Scholar
  142. 142.
    Raffa V, Vittorio O, Costa M et al (2012) Multiwalled carbon nanotube antennas induce effective plasmid dna transfection of bacterial cells. J Nanoneurosci 2(1):56–62Google Scholar
  143. 143.
    Rafsanjani MSO, Alvari A, Samim M et al (2012) Application of novel nanotechnology strategies in plant biotransformation: a contemporary overview. Recent Pat Biotechnol 6:69–79Google Scholar
  144. 144.
    Rakoczy-Trojanowska M (2002) Alternative methods of plant transformation—a short review. Cell Mol Biol Lett 7:849–858Google Scholar
  145. 145.
    Ramos-Perez V, Cifuentes A, Coronas N et al (2013) Modification of carbon nanotubes for gene delivery vectors. In: Bergese P, Hamad-Schifferli K (eds) Nanomaterial interfaces in biology: methods and protocols. Methods in molecular biology, vol 1025. Springer Science, New York, pp 261–269Google Scholar
  146. 146.
    Rao AM, Richter E, Bandow S et al (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275:187–191Google Scholar
  147. 147.
    Rinzler A, Liu J, Dai H et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A 67:29–37ADSGoogle Scholar
  148. 148.
    Rojas-Chapana J, Troszczynska J, Firkowska I et al (2005) Multi-walled carbon nanotubes for plasmid delivery into E. coli cells. Lab Chip 5:536–539Google Scholar
  149. 149.
    Russier J, Menard-Moyon C, Venturelli E et al (2011) Oxidative biodegradation of singleand multi-walled carbon nanotubes. Nanoscale 3:893–896ADSGoogle Scholar
  150. 150.
    Ruzin SE, McCarthy SC (1986) The effect of chemical facilitators on the frequency of electrofusion of tobacco mesophyll protoplast. Plant Cell Rep 5:342–345Google Scholar
  151. 151.
    Sanchez-Pomales G, Pagan-Miranda C, Santiago-Rodriguez L, Cabrera CR (2010) DNA-wrapped carbon nanotubes: from synthesis to applications. In: Marulanda JM (ed) Carbon nanotubes. InTech, Vukovar, pp 721–748Google Scholar
  152. 152.
    Santosh M, Panigrahi S, Bhattacharyya D et al (2012) Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery. J Chem Phys 136:065106ADSGoogle Scholar
  153. 153.
    Serag MF, Kaji N, Venturelli E et al (2011a) Functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5(11):9264–9270Google Scholar
  154. 154.
    Serag MF, Kaji N, Gaillard C et al (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5(1):493–499Google Scholar
  155. 155.
    Serag MF, Kaji N, Tokeshiac M, Baba Y (2012) Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. RSC Adv 2:398–400Google Scholar
  156. 156.
    Shelimov KB, Esenaliev RO, Rinzler AG et al (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282:429–434ADSGoogle Scholar
  157. 157.
    Shen C-X, Zhang Q-F, Li J et al (2010) Induction of programmed cell death in arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609Google Scholar
  158. 158.
    Shrawat AK, Good AG (2011) Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos. Methods Mol Biol 710:355–372Google Scholar
  159. 159.
    Simmons TJ, Bult J, Hashim DP et al (2009) Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. ACS Nano 3:865–870Google Scholar
  160. 160.
    Singh R, Pantarotto D, McCarthy D et al (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127:4388–4396Google Scholar
  161. 161.
    Solis-Fernandez P, Paredes JI, Cosio A et al (2010) A comparison between physically and chemically driven etching in the oxidation of graphite surfaces. J Colloid Interface Sci 344:451–459Google Scholar
  162. 162.
    Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479ADSGoogle Scholar
  163. 163.
    Star A, Tu E, Niemann J, Gabriel JCP et al (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A 103:921–926ADSGoogle Scholar
  164. 164.
    Suri A, Chakraborty AK, Coleman KS (2008) A facile, solvent-free, noncovalent, and nondisruptive route to functionalize single-wall carbon nanotubes using tertiary phosphines. Chem Mater 20:1705–1709Google Scholar
  165. 165.
    Takagi H, Soneda Y, Hatori H et al (2007) Effects of nitric acid and heat treatment on hydrogen adsorption of single-walled carbon nanotubes. Aust J Chem 60:519–523Google Scholar
  166. 166.
    Tan X-M, Fugetsu B (2007) Multi-walled carbon-nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3:285–288Google Scholar
  167. 167.
    Tan H, Fu L, Seno M (2010) Optimization of bacterial plasmid transformation using nanomaterials based on the Yoshida effect. Int J Mol Sci 11:4962–4972Google Scholar
  168. 168.
    Tan X-M, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487Google Scholar
  169. 169.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136Google Scholar
  170. 170.
    Tasis D, Papagelis K, Douroumis D et al (2008) Diameter-selective solubilization of carbon nanotubes by lipid micelles. J Nanosci Nanotechnol 8:420–423Google Scholar
  171. 171.
    Tomonari Y, Murakami H, Nakashima N (2006) Solubilization of single-walled carbon nanotubes using polycyclic aromatic ammonium amphiphiles in water-strategy for the design of solubilizers with high performance. Chem Eur J 12:4027–4034Google Scholar
  172. 172.
    Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300ADSGoogle Scholar
  173. 173.
    Tu X, Zheng MA (2008) DNA-based approach to the carbon nanotube sorting problem. Nano Res 1:185–194Google Scholar
  174. 174.
    Tu W, Lei J, Ju H (2009) Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid. Chem Eur J 15:779–784Google Scholar
  175. 175.
    Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46Google Scholar
  176. 176.
    Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2:837–846Google Scholar
  177. 177.
    Vogel SR, Müller K, Plutowski U et al (2007) DNA-carbon nanotube interactions and nanostructuring based on DNA. Phys Stat Sol (b) 244:4026–4029Google Scholar
  178. 178.
    Welsher K, Liu Z, Sherlock SP et al (2009) A route to brightly fluorescent carbon nanotubes for nearinfrared imaging in mice. Nat Nanotechnol 4(11):773–780ADSGoogle Scholar
  179. 179.
    Witus LS, Rocha JD, Yuwono VM et al (2007) Peptides that non-covalently functionalize single-walled carbon nanotubes to give controlled solubility characteristics. J Mater Chem 17:1909–1915Google Scholar
  180. 180.
    Wong SS, Joselevich E, Woolley AT et al (1998) Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394:52–55ADSGoogle Scholar
  181. 181.
    Wu Y, Phillips JA, Liu H et al (2008a) Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2(10):2023–2028Google Scholar
  182. 182.
    Wu P, Chen X, Hu N et al (2008) Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew Chem Int Ed Engl 4(27):5022–5025Google Scholar
  183. 183.
    Xie X, Goodell B, Qian Y et al (2009) A method for producing carbon nanotubes directly from plant materials. For Prod J 59(1–2):26–28Google Scholar
  184. 184.
    Xiong HF, Motchelaho MAM, Moyo M et al (2011) Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis. J Catal 278:26–40Google Scholar
  185. 185.
    Xu Y, Pehrsson PE, Chen L et al (2007) Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J Phys Chem C 111:8638–8643Google Scholar
  186. 186.
    Yan LY, Poon YF, Chan-Park MB et al (2008) Individually dispersing single-walled carbon nanotubes with water-soluble chitosan derivatives. J Phys Chem C 112:7579Google Scholar
  187. 187.
    Yang W, Thordarson P, Gooding JJ et al (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001Google Scholar
  188. 188.
    Yang D, Guo GQ, Hu JH et al (2008a) Hydrothermal treatment to prepare hydroxyl group modified multi-walled carbon nanotubes. J Mater Chem 18:350–354Google Scholar
  189. 189.
    Yang Q, Shuai L, Pan X (2008) Synthesis of fluorescent chitosan and its application in noncovalent functionalization of carbon nanotubes. Biomacromolecules 9:3422–9326Google Scholar
  190. 190.
    Yang QH, Wang Q, Gale N et al (2009) Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length. Nanotechnology 20:195603ADSGoogle Scholar
  191. 191.
    Yang S-T, Wang H, Meziani MJ et al (2009) Bio-defunctionalization of functionalized single-walled carbon nanotubes in mice. Biomacromolecules 10(7):2009–2012Google Scholar
  192. 192.
    Yeagle PL (ed) (2005) The structure of biological membranes, 2nd ed. CRC, Boca RatonGoogle Scholar
  193. 193.
    Yoshida N, Ikeda T, Yoshida T (2001) Chrysotile asbestos fibers mediate transformation of Escherichia coli by exogenous plasmid DNA. FEMS Microbiol Lett 195:133–137Google Scholar
  194. 194.
    Youn S, Wang R, Gao J et al (2012) Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata. Nanotoxicology 6(2):161–172Google Scholar
  195. 195.
    Yu B-Z, Ma J-F, Li W-X (2009) Polyethylenimine-modified multiwalled carbon nanotubes for plasmid DNA gene delivery. Nat Preced: hdl:10101/npre.2009.2753.1Google Scholar
  196. 196.
    Yuan H, Hu S, Huang P et al (2011) Single walled carbon nanotubes exhibit dual-phase regulation to exposed arabidopsis mesophyll cells. Nanoscale Res Lett 6:44ADSGoogle Scholar
  197. 197.
    Yun Y, Dong Z, Shanov V et al (2007) Nanotube electrodes and biosensors. Nano Today 2:30–37Google Scholar
  198. 198.
    Zhang M, Li J (2009) Carbon nanotube in different shapes. Mater Today 12(6):12–18Google Scholar
  199. 199.
    Zhang ZH, Yang XY, Zhang Y et al (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 12:4933–4939Google Scholar
  200. 200.
    Zhang J, Wang Q, Wang L, Wang A (2007) Manipulated dispersion of carbon nanotubes with derivatives of chitosan. Carbon 45:1917–1920Google Scholar
  201. 201.
    Zhang L, Petersen EJ, Habteselassie MY et al (2013) Degradation of multiwall carbon nanotubes by bacteria. Environ Pollut 181:335–339Google Scholar
  202. 202.
    Zhao X, Johnson JK (2007) Simulation of adsorption of DNA on carbon nanotubes. J Am Chem Soc 129:10438–10445Google Scholar
  203. 203.
    Zhao Y-L, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–1171Google Scholar
  204. 204.
    Zhao Y, Allen BL, Star A (2011) Enzymatic degradation of multiwalled carbon nanotubes. J Phys Chem A 115:9536–9544Google Scholar
  205. 205.
    Zheng M, Jagota A, Strano MS et al (2003a) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548ADSGoogle Scholar
  206. 206.
    Zheng M, Jagota A, Semke ED et al (2003) DNA assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342ADSGoogle Scholar
  207. 207.
    Zorbas V, Smith AL, Xie H et al (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127:12323–12328Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Olga M. Burlaka
    • 1
  • Yaroslav V. Pirko
    • 1
  • Alla I. Yemets
    • 1
  • Yaroslav B. Blume
    • 1
    Email author
  1. 1.Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations