Skip to main content

Application of Carbon Nanotubes for Plant Genetic Transformation

  • Conference paper
  • First Online:
Book cover Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 156))

Abstract

In this chapter, the current state of using carbon nanotubes (CNTs; single- and multi-walled) that have attracted great interdisciplinary interest in recent decades due to their peculiar properties for genetic transformation of prokaryotic and eukaryotic cells will be enlightened. The covalent and non-covalent surface chemistry for the CNT functionalization with focus on the potential applications of surface modifications in design of biocompatible CNTs will be discussed. The properties of CNTs that are favorable for biotechnological use and current status of technical approaches that allow the increase in biocompatibility and lower nanotoxicity of engineered CNTs will be described. Decisions proposed by non-covalent surface modification of CNTs will be discussed. Existing data concerning mechanisms of CNT cell entry and factors governing toxicity, cellular uptake, intracellular traffic, and biodegradation of CNTs along with bioavailability of molecular cargoes of loaded CNTs will be discussed. Eco-friendly production of water dispersions of biologically functionalized multi-walled and single-walled CNTs for use as nano-vehicles for the DNA delivery in plant genetic transformation of plants will be described. The background, advantages, and problems of using CNTs in developing of novel methods of genetic transformation, including plant genetic transformation, will be highlighted. Special attention will be paid to the limitations of conventional gene transfer techniques and promising features of CNT-based strategies having improved efficacy, reproducibility, and accuracy along with less time consumption. Issues impeding manipulation of CNTs such as entangled bundle formation, low water solubility, inert properties of pristine CNTs, etc., and ways to solve arising tasks will be overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ago H, Petritsch K, Shaffer MSP et al (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11:1281–1285

    Google Scholar 

  2. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1799

    Google Scholar 

  3. Albertorio F, Hughes ME, Golovchenko JA, Branton D (2009) Base dependent DNA-carbon nanotube interactions: activation enthalpies and assembly-disassembly control. Nanotechnology 20(39):395101

    Google Scholar 

  4. Ali-Boucetta H, Al-Jamal KT, McCarthy D et al (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 4:459–461

    Google Scholar 

  5. Allen BL, Kotchey GP, Chen YN et al (2009) Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J Am Chem Soc 131:17194–17205

    Google Scholar 

  6. Anastas P, Warner J (1998) Green chemistry: theory and practice. Oxford University, USA

    Google Scholar 

  7. Arnold MS, Guler MO, Hersam MC, Stupp SI (2005) Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21:4705–4709

    Google Scholar 

  8. Baddour CE, Briens C (2005) Carbon nanotube synthesis: a review. Inter J Chem React Eng 3:3–20

    Google Scholar 

  9. Balavoine F, Schultz P, Richard C et al (1999) Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew Chem Int Ed 38(13–14):1912–1915

    Google Scholar 

  10. Bandow S, Rao AM, Williams KA et al (1997) Purification of single-wall carbon nanotubes by microfiltration. J Phys Chem B 101:8839–8842

    Google Scholar 

  11. Becker ML, Fagan JA, Gallant ND et al (2007) Length dependent uptake of DNA wrapped single wall carbon nanotubes. Adv Mater 19:939–945

    Google Scholar 

  12. Bekyarova E, Ni Y, Malarkey EB et al (2005) Applications of carbon nanotubes in biotechnology. J Biomed Nanotechnol 1(1):3–17

    Google Scholar 

  13. Bhirde A, Patel V, Gavard J et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    Google Scholar 

  14. Buhro WE, Colvin VL (2003) Semiconductor nanocrystals—shape matters. Nat Mater 2(3):138–139

    ADS  Google Scholar 

  15. Burlaka OM, Pirko YV, Yemets AI, Blume YB (2011) Carbon nanotubes and their applications in plants genetic transformation (In Ukrainian). Nanostruct Mater Sci 2:84–101

    Google Scholar 

  16. Burlaka OM, Pirko YV, Yemets AI, Blume YB (2012) Functionalized carbon nanotubes for the delivery of biomolecules into plant cells. In: Abstracts of plant biology congress FESPB/EPSO, 29 July–3 August 2012, Freiburg, Germany

    Google Scholar 

  17. Cai D, Mataraza J, Qin Z et al (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2(6):449–454

    Google Scholar 

  18. Canas JE, Long M, Nations S et al (2008) Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Google Scholar 

  19. Cao Q, Rogers JA (2008) Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res 1:259–272

    Google Scholar 

  20. Cha TS, Chen CF, Yee W et al (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434

    Google Scholar 

  21. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Google Scholar 

  22. Chen X, Tam UC, Czlapinski JL et al (2006) Interfacing carbon nanotubes with living cells. J Am Chem Soc 128:6292–6293

    Google Scholar 

  23. Chen Y, Liu H, Ye T, Kim J, Mao C (2007) DNA-directed assembly of single-wall carbon nanotubes. J Am Chem Soc 129:8696–8697

    Google Scholar 

  24. Chen JY, Chen SY, Zhao XR et al (2008a) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785

    Google Scholar 

  25. Chen X, Chen J, Deng C et al (2008) Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Talanta 76:763–767

    Google Scholar 

  26. Chen JL, Zhu ZH, Ma Q et al (2009) Effects of pre-treatment in air microwave plasma on the structure of CNTs and the activity of Ru/CNTs catalysts for ammonia decomposition. Catal Today 148(1–2):97–102

    Google Scholar 

  27. Chen ZY, Liang K, Qiu RX, Luo LP (2011) Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. Ultrasound Med 30:1247–1258

    Google Scholar 

  28. Chen J, Chen Q, Ma Q (2012) Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes. J Colloid Interface Sci 370(1):32–38

    Google Scholar 

  29. Cheng J (2008) Biocompatibility and properties of carbon nanotubes in the biological systems. Dissertation, City University of Hong Kong

    Google Scholar 

  30. Cheng F, Zhang S, Adronov A et al (2006) Triply fused ZnII-porphyrin oligomers: synthesis, properties, and supramolecular interactions with singlewalled carbon nanotubes (SWNTs). Chem Eur J 12(23):6062–6070

    Google Scholar 

  31. Cheng C, Muller KH, Koziol KK et al (2009) Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30:4152–4160

    Google Scholar 

  32. Cheng Q, Debnath S, Gregan E, Byrne HJ (2010) Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent. J Phys Chem C 114:8821–8827

    Google Scholar 

  33. Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126:15638–15639

    Google Scholar 

  34. Chiang YC, Lin WH, Chang YC (2011) The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl Surf Sci 257:2401–2410

    ADS  Google Scholar 

  35. Chowrira GM, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol Biotechnol 5:85–96

    Google Scholar 

  36. Clark MD, Subramanian S, Krishnamoorti R (2011) Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J Colloid Interface Sci 354(1):144–151

    Google Scholar 

  37. Cooper GM, Hausman RE (2009) The cell: a molecular approach, 5th ed. Sinauer Associates Inc, Sunderland

    Google Scholar 

  38. D’Souza F, Chitta R, Sandanayaka ASD et al (2007) Supramolecular carbon nanotube-fullerene donor-acceptor hybrids for photoinduced electron transfer. J Am Chem Soc 129:15865–15871

    Google Scholar 

  39. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Google Scholar 

  40. Dillon AC, Jones KM, Bekkedahl TA et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    ADS  Google Scholar 

  41. Ding K, Hu B, Xie Y et al (2009) A simple route to coat mesoporous SiO2 layer on carbon nanotubes. J Mater Chem 19:3725–3731

    Google Scholar 

  42. Dovbeshko GI, Repnytska OP, Obraztsova ED et al (2003) Study of DNA interaction with carbon nanotubes. Semicond Phys Quantum Electron Optoelectron 6(1):105–108

    Google Scholar 

  43. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego

    Google Scholar 

  44. Dwyer C, Guthold M, Falvo M et al (2002) DNA-functionalized single-walled carbon nanotubes. Nanotechnology 13:601–604

    ADS  Google Scholar 

  45. Ebbesen T, Ajatan A, Hiura H, Tanigaki K (1994) Purification of carbon nanotubes. Nature 367:519–520

    ADS  Google Scholar 

  46. Ehli C, Rahman GMA, Jux N et al (2006) Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc 128:11222–11231

    Google Scholar 

  47. Etxeberria E, Gonzalez P, Baroja-Fernandez E, Pozueta-Romero J (2006) Fluid phase endocytic uptake of artificial nano-spheresand fluorescent quantum dots by sycamore cultured cells. Plant Signal Behav 1:196–200

    Google Scholar 

  48. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design. J Am Chem Soc 129(27):8438–8439

    Google Scholar 

  49. Fennimore AM, Yuzvinsky TD, Han W-Q et al (2003) Rotational actuators based on carbon nanotubes. Nature 424:408–410

    ADS  Google Scholar 

  50. Fouad M, Kaji N, Jabasini M et al (2008) Nanotechnology meets plant biotechnology: carbon nanotubes deliver DNA and incorporate into the plant cell structure. In: Abstracts of 12th international conference on miniaturized systems for chemistry and life sciences, San Diego, California, USA, 12–16 October, 2008

    Google Scholar 

  51. Gandra N, Chiu PL, Li W et al (2009) Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogs. J Phys Chem 113:5182–5185

    Google Scholar 

  52. Georgakilas V, Tagmatarchis N, Pantarotto D et al (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 24:3050–3051

    Google Scholar 

  53. Goodwin AP, Tabakman SM, Welsher K et al (2009) Phospholipid-dextran with a single coupling point: a useful amphiphile for functionalization of nanomaterials. J Am Chem Soc 131:289–296

    Google Scholar 

  54. Guo Z, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mater 10(9):701–703

    Google Scholar 

  55. Hamon MA, Itkis ME, Niyogi S et al (2001) Effect of the rehybridization on the electronic structure of single-walled carbon nanotubes. J Am Chem Soc 123:11292–11293

    Google Scholar 

  56. Han X, Li Y, Deng Z (2007) DNA-wrapped single walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522

    Google Scholar 

  57. Harutyunyan AR, Pradhan BK, Chang J et al (2002) Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B 106:8671–8675

    Google Scholar 

  58. Hasegawa T, Fujisawa T, Numata M et al (2004) Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan. Chem Commun 19:2150–2151

    Google Scholar 

  59. Hayashimoto A, Li Z, Murai N (1990) A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol 93:857–863

    Google Scholar 

  60. Hernadi K, Siska A, Thien-Nga L et al (2001) Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics 141:203–209

    Google Scholar 

  61. Herrero MA, Toma FM, Al-Jamal KT et al (2009) Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J Am Chem Soc 131:9843–9848

    Google Scholar 

  62. Holder PG, Francis MB (2007) Integration of a self-assembling protein scaffold with water-soluble single-walled carbon nanotubes. Angew Chem Int Ed 46:4370–4373

    Google Scholar 

  63. Hu Y, Guo C (2011) Carbon nanotubes and carbon nanotubes/metal oxide heterostructures: synthesis, characterization and electrochemical property. In: Naraghi M (ed) Carbon nanotubes—growth and applications. InTech, Croatia, pp 3–34

    Google Scholar 

  64. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    ADS  Google Scholar 

  65. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Google Scholar 

  66. Javey A, Guo J, Wang Q, Lundstrom M, Dai HJ (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    ADS  Google Scholar 

  67. Jiang Z, Berg H (1995) Increase of protoplast electrofusion supported by dextran fractions. Bioelectrochem Bioenerg 38:383–387

    Google Scholar 

  68. Jiang W, Yu B, Liu W, Hao J (2007) Carbon nanotubes incorporated within lyotropic hexagonal liquid crystal formed in room-temperature ionic liquids. Langmuir 23:8549–8553

    Google Scholar 

  69. Joshi PP, Merchant SA, Wang Y, Schmidtke DW (2005) Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal Chem 77:3183–3188

    Google Scholar 

  70. Kagan VE, Konduru NV, Feng WH et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359

    ADS  Google Scholar 

  71. Kakkar A, Verma VK (2011) Agrobacterium mediated biotransformation. J Appl Pharm Sci 1(7):29–35

    Google Scholar 

  72. Kam NWS, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026

    Google Scholar 

  73. Kam NWS, Dai H (2006) Single-walled carbon nanotubes for transport and delivery of biological cargos. Phys Stat Sol 243:3561–3566

    ADS  Google Scholar 

  74. Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Google Scholar 

  75. Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605

    ADS  Google Scholar 

  76. Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577–581

    Google Scholar 

  77. Kang B, Yu D, Chang S et al (2008) Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells. Nanotechnology 19(37):375103–375111

    Google Scholar 

  78. Kang Y, Liu YC, Wang Q et al (2009) On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials 30:2807–2815

    Google Scholar 

  79. Karajanagi SS, Yang H, Asuri P et al (2006) Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 22(4):1392–1395

    Google Scholar 

  80. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397

    Google Scholar 

  81. Kavakka JS, Heikkinen S, Kilpelainen I et al (2007) Noncovalent attachment of pyro-pheophorbide a to a carbon nanotube. J Chem Commun 5:519–521

    Google Scholar 

  82. Kennedy AJ, Hull MS, Steevens JA et al (2008) Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27:1932–1941

    Google Scholar 

  83. Kharisov BI, Kharissova OV, Gutierre HL, Mendez UO (2009) Recent advances on the soluble carbon nanotubes. Ind Eng Chem Res 48:572–590

    Google Scholar 

  84. Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Google Scholar 

  85. Khodakovskaya M, de Silva K, Nedosekin D et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A 108:1028–1033

    ADS  Google Scholar 

  86. Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Google Scholar 

  87. Klee H, Horsch R, Rogers S (1987) Agrobacterium-mediated plant transformation and its further applications to plant biology. Ann Rev Plant Physiol 38:467–486

    Google Scholar 

  88. Kostarelos K, Lacerda L, Pastorin G et al (2007) A cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotech 2:108–113

    ADS  Google Scholar 

  89. Kraszewski S, Bianco A, Tarek M, Ramseyer C (2012) Insertion of short amino-functionalized single-walled carbon nanotubes into phospholipid bilayer occurs by passive diffusion. PLoS One 7(7):40703. doi:10.1371/journal.pone.0040703

    ADS  Google Scholar 

  90. Kurppa K, Jiang H, Szilvay GR et al (2007) Controlled hybrid nanostructures via protein mediated noncovalent functionalization of carbon nanotubes. Angew Chem Int Ed 46:6446–6449

    Google Scholar 

  91. Lacerda L, Raffa S, Prato M et al (2007) Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2:38–43

    Google Scholar 

  92. Lacerda L, Russier J, Pastorin G et al (2012) Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 33:3334–3343

    Google Scholar 

  93. Lamprecht C, Liashkovich I, Neves V et al (2009) AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20:434001

    ADS  Google Scholar 

  94. Lay CL, Liu HQ, Tan HR, Liu Y (2010) Delivery of paclitaxel by physically loading onto poly(ethylene glycol) PEG-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology 21(6):065101–065111

    ADS  Google Scholar 

  95. Lazzeri PA (1995) Stable transformation of barley via direct DNA uptake. Electroporation- and PEG-mediated protoplast transformation. Methods Mol Biol 49:95–106

    Google Scholar 

  96. Li G, Xu H, Huang W et al (2008) A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes. Meas Sci Technol 19:065203

    ADS  Google Scholar 

  97. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Google Scholar 

  98. Lin S, Reppert J, Hu Q et al (2009a) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    Google Scholar 

  99. Lin C, Fugetsu B, Su Y, Watari F (2009) Studies on toxicity of multiwalled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 30:578–583

    Google Scholar 

  100. Liu Y, Wu DC, Zhang WD et al (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure non-covalent immobilization and efficient delivery of DNA. Angew Chem Int Edn 44(30):4782–4785

    Google Scholar 

  101. Liu Y, Liang P, Zhang H-Y, Guo D-S (2006) Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small 2:874–878

    Google Scholar 

  102. Liu Z, Winters M, Holodniy M, Dai HJ (2007a) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Edn 46:2023–2027

    Google Scholar 

  103. Liu Z, Sun X, Nakayama N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Google Scholar 

  104. Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660

    Google Scholar 

  105. Liu Z, Tabakman S, Welsher K, Dai H (2009a) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    Google Scholar 

  106. Liu Q, Chen B, Wang Q et al (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010

    ADS  Google Scholar 

  107. Lu Q, Moore JM, Huang G et al (2004) RNA polymer translocation with single-walled carbon nanotubes. Nano Lett 4:2473–2477

    ADS  Google Scholar 

  108. Lu G, Maragakis P, Kaxiras E (2005) Carbon nanotube interaction with DNA. Nano Lett 5(5):897–900

    Google Scholar 

  109. Lu F, Gu L, Meziani MJ et al (2009) Advances in bioapplications of carbon nanotubes. Adv Mater 21:139–152

    Google Scholar 

  110. Lurquin PF (1997) Gene transfer by electroporation. Mol Biotechnol 7:5–35

    Google Scholar 

  111. Matsuura K, Saito T, Okazaki T et al (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett 429:497–502

    ADS  Google Scholar 

  112. Mattos IB, Alves DA, Hollanda LM et al (2011) Effects of multi-walled carbon nanotubes (MWCNT) under Neisseria meningitides transformation process. J Nanobiotechnol 9:53

    Google Scholar 

  113. Miaczynska M, Stenmark H (2008) Mechanisms and functions of endocytosis. J Cell Biol 180:7–11

    Google Scholar 

  114. Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9(77):3514–3527

    Google Scholar 

  115. Mohanpuria P, Rana N, Yadav S (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Google Scholar 

  116. Moulton SE, Maugey M, Poulin P, Wallace GG (2007) Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions. J Am Chem Soc 129:9452–9457

    Google Scholar 

  117. Murugesan S, Myers K, Subramanian V (2011) Amino-functionalized and acid treated multi-walled carbon nanotubes as supports for electrochemical oxidation of formic acid. Appl Catal B 103:266–274

    Google Scholar 

  118. Nagy JI, Maliga P (1976) Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris. Pflanzenphysiol 78:453–544

    Google Scholar 

  119. Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Google Scholar 

  120. Nakashima N, Okuzono S, Murakami H et al (2003) DNA dissolves single-walled carbon nanotubes in water. Chem Lett 32(5):456–457

    Google Scholar 

  121. Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3:1259–1265

    Google Scholar 

  122. Neuhaus G, Spangenberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217

    Google Scholar 

  123. Nguyen CV, Delzeit L, Cassell AM et al (2002) Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett 2:1079–1081

    ADS  Google Scholar 

  124. Niyogi S, Hu H, Hamon MA et al (2001) Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). J Am Chem Soc 123:733–734

    Google Scholar 

  125. Niyogi S, Hamon MA, Hu H et al (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Google Scholar 

  126. Numata M, Sugikawa K, Kaneko K, Shinkai S (2008) Creation of hierarchical carbon nanotube assemblies through alternative packing of complementary semi-artificial b-1,3-glucan/carbon nanotube composites. Chem Eur J 14:2398–2404

    Google Scholar 

  127. Nunes A, Amsharov N, Guo C et al (2010) Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small 6(20):2281–2291

    Google Scholar 

  128. O’Connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    ADS  Google Scholar 

  129. Ogoshi T, Inagaki A, Yamagishi T-A, Nakamoto Y (2008) Defection-selective solubilization and chemically-responsive solubility switching of single-walled carbon nanotubes with cucurbit[7]uril. Chem Commun 19:2245–2247

    Google Scholar 

  130. Pantarotto D, Briand JP, Prato M, Bianco A (2004a) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 1:16–17

    Google Scholar 

  131. Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43:5242–5246

    Google Scholar 

  132. Petersen EJ, Zhang LW, Mattison NT et al (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–9856

    ADS  Google Scholar 

  133. Podesta JE, Al-Jamal KT, Herrero MA et al (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5:1176–1185

    Google Scholar 

  134. Pogodin S, Baulin VA (2010) Can a carbon nanotube pierce through a phospholipid bilayer? ACS Nano 4(9):5293–5300

    Google Scholar 

  135. Porter AE, Gass M, Muller K et al (2007) Direct imaging of single-walled carbon nanotubes in cells. Nature Nanotech 2:713–717

    ADS  Google Scholar 

  136. Porter AE, Gass M, Bendall JS et al (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3:1485–1492

    Google Scholar 

  137. Potrykus I (1990) Gene transfer to cereals: an assessment. BioTechnology 8:535–542

    Google Scholar 

  138. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Google Scholar 

  139. Prencipe G, Tabakman SM, Welsher K et al (2009) PEG-branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131:4783–4787

    Google Scholar 

  140. Qi P, Vermesh O, Grecu M et al (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351

    ADS  Google Scholar 

  141. Raffa V, Ciofani G, Nitodas S et al (2008) Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 46:1600–1610

    Google Scholar 

  142. Raffa V, Vittorio O, Costa M et al (2012) Multiwalled carbon nanotube antennas induce effective plasmid dna transfection of bacterial cells. J Nanoneurosci 2(1):56–62

    Google Scholar 

  143. Rafsanjani MSO, Alvari A, Samim M et al (2012) Application of novel nanotechnology strategies in plant biotransformation: a contemporary overview. Recent Pat Biotechnol 6:69–79

    Google Scholar 

  144. Rakoczy-Trojanowska M (2002) Alternative methods of plant transformation—a short review. Cell Mol Biol Lett 7:849–858

    Google Scholar 

  145. Ramos-Perez V, Cifuentes A, Coronas N et al (2013) Modification of carbon nanotubes for gene delivery vectors. In: Bergese P, Hamad-Schifferli K (eds) Nanomaterial interfaces in biology: methods and protocols. Methods in molecular biology, vol 1025. Springer Science, New York, pp 261–269

    Google Scholar 

  146. Rao AM, Richter E, Bandow S et al (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275:187–191

    Google Scholar 

  147. Rinzler A, Liu J, Dai H et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A 67:29–37

    ADS  Google Scholar 

  148. Rojas-Chapana J, Troszczynska J, Firkowska I et al (2005) Multi-walled carbon nanotubes for plasmid delivery into E. coli cells. Lab Chip 5:536–539

    Google Scholar 

  149. Russier J, Menard-Moyon C, Venturelli E et al (2011) Oxidative biodegradation of singleand multi-walled carbon nanotubes. Nanoscale 3:893–896

    ADS  Google Scholar 

  150. Ruzin SE, McCarthy SC (1986) The effect of chemical facilitators on the frequency of electrofusion of tobacco mesophyll protoplast. Plant Cell Rep 5:342–345

    Google Scholar 

  151. Sanchez-Pomales G, Pagan-Miranda C, Santiago-Rodriguez L, Cabrera CR (2010) DNA-wrapped carbon nanotubes: from synthesis to applications. In: Marulanda JM (ed) Carbon nanotubes. InTech, Vukovar, pp 721–748

    Google Scholar 

  152. Santosh M, Panigrahi S, Bhattacharyya D et al (2012) Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery. J Chem Phys 136:065106

    ADS  Google Scholar 

  153. Serag MF, Kaji N, Venturelli E et al (2011a) Functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5(11):9264–9270

    Google Scholar 

  154. Serag MF, Kaji N, Gaillard C et al (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5(1):493–499

    Google Scholar 

  155. Serag MF, Kaji N, Tokeshiac M, Baba Y (2012) Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. RSC Adv 2:398–400

    Google Scholar 

  156. Shelimov KB, Esenaliev RO, Rinzler AG et al (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282:429–434

    ADS  Google Scholar 

  157. Shen C-X, Zhang Q-F, Li J et al (2010) Induction of programmed cell death in arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609

    Google Scholar 

  158. Shrawat AK, Good AG (2011) Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos. Methods Mol Biol 710:355–372

    Google Scholar 

  159. Simmons TJ, Bult J, Hashim DP et al (2009) Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. ACS Nano 3:865–870

    Google Scholar 

  160. Singh R, Pantarotto D, McCarthy D et al (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127:4388–4396

    Google Scholar 

  161. Solis-Fernandez P, Paredes JI, Cosio A et al (2010) A comparison between physically and chemically driven etching in the oxidation of graphite surfaces. J Colloid Interface Sci 344:451–459

    Google Scholar 

  162. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    ADS  Google Scholar 

  163. Star A, Tu E, Niemann J, Gabriel JCP et al (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A 103:921–926

    ADS  Google Scholar 

  164. Suri A, Chakraborty AK, Coleman KS (2008) A facile, solvent-free, noncovalent, and nondisruptive route to functionalize single-wall carbon nanotubes using tertiary phosphines. Chem Mater 20:1705–1709

    Google Scholar 

  165. Takagi H, Soneda Y, Hatori H et al (2007) Effects of nitric acid and heat treatment on hydrogen adsorption of single-walled carbon nanotubes. Aust J Chem 60:519–523

    Google Scholar 

  166. Tan X-M, Fugetsu B (2007) Multi-walled carbon-nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3:285–288

    Google Scholar 

  167. Tan H, Fu L, Seno M (2010) Optimization of bacterial plasmid transformation using nanomaterials based on the Yoshida effect. Int J Mol Sci 11:4962–4972

    Google Scholar 

  168. Tan X-M, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Google Scholar 

  169. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Google Scholar 

  170. Tasis D, Papagelis K, Douroumis D et al (2008) Diameter-selective solubilization of carbon nanotubes by lipid micelles. J Nanosci Nanotechnol 8:420–423

    Google Scholar 

  171. Tomonari Y, Murakami H, Nakashima N (2006) Solubilization of single-walled carbon nanotubes using polycyclic aromatic ammonium amphiphiles in water-strategy for the design of solubilizers with high performance. Chem Eur J 12:4027–4034

    Google Scholar 

  172. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    ADS  Google Scholar 

  173. Tu X, Zheng MA (2008) DNA-based approach to the carbon nanotube sorting problem. Nano Res 1:185–194

    Google Scholar 

  174. Tu W, Lei J, Ju H (2009) Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid. Chem Eur J 15:779–784

    Google Scholar 

  175. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46

    Google Scholar 

  176. Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2:837–846

    Google Scholar 

  177. Vogel SR, Müller K, Plutowski U et al (2007) DNA-carbon nanotube interactions and nanostructuring based on DNA. Phys Stat Sol (b) 244:4026–4029

    Google Scholar 

  178. Welsher K, Liu Z, Sherlock SP et al (2009) A route to brightly fluorescent carbon nanotubes for nearinfrared imaging in mice. Nat Nanotechnol 4(11):773–780

    ADS  Google Scholar 

  179. Witus LS, Rocha JD, Yuwono VM et al (2007) Peptides that non-covalently functionalize single-walled carbon nanotubes to give controlled solubility characteristics. J Mater Chem 17:1909–1915

    Google Scholar 

  180. Wong SS, Joselevich E, Woolley AT et al (1998) Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394:52–55

    ADS  Google Scholar 

  181. Wu Y, Phillips JA, Liu H et al (2008a) Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2(10):2023–2028

    Google Scholar 

  182. Wu P, Chen X, Hu N et al (2008) Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew Chem Int Ed Engl 4(27):5022–5025

    Google Scholar 

  183. Xie X, Goodell B, Qian Y et al (2009) A method for producing carbon nanotubes directly from plant materials. For Prod J 59(1–2):26–28

    Google Scholar 

  184. Xiong HF, Motchelaho MAM, Moyo M et al (2011) Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis. J Catal 278:26–40

    Google Scholar 

  185. Xu Y, Pehrsson PE, Chen L et al (2007) Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J Phys Chem C 111:8638–8643

    Google Scholar 

  186. Yan LY, Poon YF, Chan-Park MB et al (2008) Individually dispersing single-walled carbon nanotubes with water-soluble chitosan derivatives. J Phys Chem C 112:7579

    Google Scholar 

  187. Yang W, Thordarson P, Gooding JJ et al (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001

    Google Scholar 

  188. Yang D, Guo GQ, Hu JH et al (2008a) Hydrothermal treatment to prepare hydroxyl group modified multi-walled carbon nanotubes. J Mater Chem 18:350–354

    Google Scholar 

  189. Yang Q, Shuai L, Pan X (2008) Synthesis of fluorescent chitosan and its application in noncovalent functionalization of carbon nanotubes. Biomacromolecules 9:3422–9326

    Google Scholar 

  190. Yang QH, Wang Q, Gale N et al (2009) Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length. Nanotechnology 20:195603

    ADS  Google Scholar 

  191. Yang S-T, Wang H, Meziani MJ et al (2009) Bio-defunctionalization of functionalized single-walled carbon nanotubes in mice. Biomacromolecules 10(7):2009–2012

    Google Scholar 

  192. Yeagle PL (ed) (2005) The structure of biological membranes, 2nd ed. CRC, Boca Raton

    Google Scholar 

  193. Yoshida N, Ikeda T, Yoshida T (2001) Chrysotile asbestos fibers mediate transformation of Escherichia coli by exogenous plasmid DNA. FEMS Microbiol Lett 195:133–137

    Google Scholar 

  194. Youn S, Wang R, Gao J et al (2012) Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata. Nanotoxicology 6(2):161–172

    Google Scholar 

  195. Yu B-Z, Ma J-F, Li W-X (2009) Polyethylenimine-modified multiwalled carbon nanotubes for plasmid DNA gene delivery. Nat Preced: hdl:10101/npre.2009.2753.1

    Google Scholar 

  196. Yuan H, Hu S, Huang P et al (2011) Single walled carbon nanotubes exhibit dual-phase regulation to exposed arabidopsis mesophyll cells. Nanoscale Res Lett 6:44

    ADS  Google Scholar 

  197. Yun Y, Dong Z, Shanov V et al (2007) Nanotube electrodes and biosensors. Nano Today 2:30–37

    Google Scholar 

  198. Zhang M, Li J (2009) Carbon nanotube in different shapes. Mater Today 12(6):12–18

    Google Scholar 

  199. Zhang ZH, Yang XY, Zhang Y et al (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 12:4933–4939

    Google Scholar 

  200. Zhang J, Wang Q, Wang L, Wang A (2007) Manipulated dispersion of carbon nanotubes with derivatives of chitosan. Carbon 45:1917–1920

    Google Scholar 

  201. Zhang L, Petersen EJ, Habteselassie MY et al (2013) Degradation of multiwall carbon nanotubes by bacteria. Environ Pollut 181:335–339

    Google Scholar 

  202. Zhao X, Johnson JK (2007) Simulation of adsorption of DNA on carbon nanotubes. J Am Chem Soc 129:10438–10445

    Google Scholar 

  203. Zhao Y-L, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–1171

    Google Scholar 

  204. Zhao Y, Allen BL, Star A (2011) Enzymatic degradation of multiwalled carbon nanotubes. J Phys Chem A 115:9536–9544

    Google Scholar 

  205. Zheng M, Jagota A, Strano MS et al (2003a) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548

    ADS  Google Scholar 

  206. Zheng M, Jagota A, Semke ED et al (2003) DNA assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    ADS  Google Scholar 

  207. Zorbas V, Smith AL, Xie H et al (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127:12323–12328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav B. Blume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Burlaka, O., Pirko, Y., Yemets, A., Blume, Y. (2015). Application of Carbon Nanotubes for Plant Genetic Transformation. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_20

Download citation

Publish with us

Policies and ethics