Physical and Mechanical Properties of Surface Nanocrystalline Structures Generated by Severe Thermal-Plastic Deformation

  • Hryhoriy NykyforchynEmail author
  • Volodymyr Kyryliv
  • Olga Maksymiv
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)


Improvement of some physical and mechanical properties of surface layers of engineering steels by severe thermal-plastic deformation treatment due to high-speed friction and simultaneous rapid cooling in a special medium is analysed. Besides the structure dispersion down to nanostructure, the phase and the chemical compositions of the surface layer are modified by the treatment. It is shown that the improvement of physical and mechanical properties of the strengthened surface layer depends substantially on the coolant medium composition. Oil-base coolants provide higher microhardness, wear resistance and fatigue crack growth resistance.


Nanocrystalline structure Steel Mechanical-pulse treatment Microhardness Wear resistance Fatigue crack growth resistance 


  1. 1.
    Buckley DH (1981) Surface effects in adhesion, friction, wear, and lubrication. Elsevier, New YorkGoogle Scholar
  2. 2.
    Fisher JC (1951) Calculation of diffusion penetration curves for surface and grain boundary diffusion. J Appl Phys 22:74CrossRefADSGoogle Scholar
  3. 3.
    Hunger H-J et al (1983) Ausgewelte Untersuchungverfaren in der Metalkunde. VEB Deutscher Verlag für Grundstoffindustrie. LeipzigGoogle Scholar
  4. 4.
    Hull D, Bacon DJ (2011) Introduction to dislocations. Elsevier, New YorkGoogle Scholar
  5. 5.
    Krous W, Nolze G (1996) Powder cell—a program for the representation and manipulation of crystal structures and calculation of the resulting x-ray powder patterns. J Appl Cryst 29:301–303CrossRefGoogle Scholar
  6. 6.
    Kalichak TN, Kyryliv VI, Fenchin S (1989) Mechanopulsed hardening of long components of the hydraulic cylinder rod type. Sov Mater Sci 25(1):96–99CrossRefGoogle Scholar
  7. 7.
    Kocanda D, Hutsaylyuk V, Slezak T, Torzewski J, Nykyforchyn H, Kyryliv V (2012) Fatigue crack growth rates of S235 and S355 steels after friction stir processing. Mater Sci Forum 726:203–210CrossRefGoogle Scholar
  8. 8.
    Kuzydlowski KJ (2006) Physical, chemical, and mechanical properties of nanostructured materials. Mater Sci 42(1):85–94CrossRefGoogle Scholar
  9. 9.
    Kyryliv VI (1998) Surface alloying of steels in the process of mechanical pulse treatment. Mater Sci 34(3):416–419CrossRefGoogle Scholar
  10. 10.
    Kyryliv VI (1999) Surface saturation of steel with carbon during mechanikel-pulse treatment. Mater Sci 35(6):853–858CrossRefGoogle Scholar
  11. 11.
    Kyryliv VI (2012) Improvement of the wear resistance of medium-carbon steel by nanodispersion of surface layers. Mater Sci 48(1):119–123CrossRefGoogle Scholar
  12. 12.
    Kyryliv VI, Koval’ YuM (2001) Surface alloying of steels from special process media. Mater Sci 37(5):816–819CrossRefGoogle Scholar
  13. 13.
    Liu G, Lu J, Lu K (2000) Surface nanocrystallization of 316 Lstainless steel induced by ultrasonic shot peening. Mater Sci Eng A 286:91–95CrossRefGoogle Scholar
  14. 14.
    Lu K, Lu J (1999) Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. Mater Sci Technol 15:193CrossRefzbMATHGoogle Scholar
  15. 15.
    Morris DG (1998) Mechanical behaviour of nanostrured materials. Trans Tech, Uetikon-ZurichGoogle Scholar
  16. 16.
    Meuers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRefGoogle Scholar
  17. 17.
    Nykyforchyn HM, Kyryliv VI, Slobodjan DzV et al (1998) Structural steels surface modification by mechanical pulse treatment for corrosion protection and wear resistance. Surf Coat Technol 100–101: 125–127CrossRefGoogle Scholar
  18. 18.
    Nykyforchyn HM, Kyryliv VI, Bassarab AI (2002) Wear resistance of the mechanical-pulse treatment 40X steel during abrasive friction and cavitation. Mater Sci 38(6):860–864CrossRefGoogle Scholar
  19. 19.
    Powder Diffraction File (1973) Search manual alphabetical listing and search section of frequently encountered phases (1974) Inorganic, PhiladelphiaGoogle Scholar
  20. 20.
    Takaki S (2003) Thermodynamics of nitrogen absorption into solid solution in Fe-Cr-Mn ternary alloys. Mater Sci Forum 215:426–432Google Scholar
  21. 21.
    Takaki S (2010) Review on the hall-petch relation in ferritic steel. Mater Sci Forum Vols. 654–656: pp. 11–16Google Scholar
  22. 22.
    Takaki S, Kawasaki K, Kimura Y (2001) Mechanical properties of ultra fine grained steels. J Mater Technol 117(3):359–363CrossRefGoogle Scholar
  23. 23.
    Tao NR, Sui ML, Lu J, Lu K (1999) Surface nanocrystallization of iron induced by ultrasonic shot peening. NanoStruct Mater 11:433–440CrossRefGoogle Scholar
  24. 24.
    Tao NR, Wang ZN, Tong WP (2003) An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater 50:215Google Scholar
  25. 25.
    Valiev RZ, Islamgaliev RK, Aleksandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Progress Mat Sci 45:103CrossRefGoogle Scholar
  26. 26.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hryhoriy Nykyforchyn
    • 1
    Email author
  • Volodymyr Kyryliv
    • 1
  • Olga Maksymiv
    • 1
  1. 1.Karpenko Physico-Mechanical Institute of NASULvivUkraine

Personalised recommendations