Skip to main content

Physical and Mechanical Properties of Surface Nanocrystalline Structures Generated by Severe Thermal-Plastic Deformation

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 156))

Abstract

Improvement of some physical and mechanical properties of surface layers of engineering steels by severe thermal-plastic deformation treatment due to high-speed friction and simultaneous rapid cooling in a special medium is analysed. Besides the structure dispersion down to nanostructure, the phase and the chemical compositions of the surface layer are modified by the treatment. It is shown that the improvement of physical and mechanical properties of the strengthened surface layer depends substantially on the coolant medium composition. Oil-base coolants provide higher microhardness, wear resistance and fatigue crack growth resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buckley DH (1981) Surface effects in adhesion, friction, wear, and lubrication. Elsevier, New York

    Google Scholar 

  2. Fisher JC (1951) Calculation of diffusion penetration curves for surface and grain boundary diffusion. J Appl Phys 22:74

    Article  ADS  Google Scholar 

  3. Hunger H-J et al (1983) Ausgewelte Untersuchungverfaren in der Metalkunde. VEB Deutscher Verlag für Grundstoffindustrie. Leipzig

    Google Scholar 

  4. Hull D, Bacon DJ (2011) Introduction to dislocations. Elsevier, New York

    Google Scholar 

  5. Krous W, Nolze G (1996) Powder cell—a program for the representation and manipulation of crystal structures and calculation of the resulting x-ray powder patterns. J Appl Cryst 29:301–303

    Article  Google Scholar 

  6. Kalichak TN, Kyryliv VI, Fenchin S (1989) Mechanopulsed hardening of long components of the hydraulic cylinder rod type. Sov Mater Sci 25(1):96–99

    Article  Google Scholar 

  7. Kocanda D, Hutsaylyuk V, Slezak T, Torzewski J, Nykyforchyn H, Kyryliv V (2012) Fatigue crack growth rates of S235 and S355 steels after friction stir processing. Mater Sci Forum 726:203–210

    Article  Google Scholar 

  8. Kuzydlowski KJ (2006) Physical, chemical, and mechanical properties of nanostructured materials. Mater Sci 42(1):85–94

    Article  Google Scholar 

  9. Kyryliv VI (1998) Surface alloying of steels in the process of mechanical pulse treatment. Mater Sci 34(3):416–419

    Article  Google Scholar 

  10. Kyryliv VI (1999) Surface saturation of steel with carbon during mechanikel-pulse treatment. Mater Sci 35(6):853–858

    Article  Google Scholar 

  11. Kyryliv VI (2012) Improvement of the wear resistance of medium-carbon steel by nanodispersion of surface layers. Mater Sci 48(1):119–123

    Article  Google Scholar 

  12. Kyryliv VI, Koval’ YuM (2001) Surface alloying of steels from special process media. Mater Sci 37(5):816–819

    Article  Google Scholar 

  13. Liu G, Lu J, Lu K (2000) Surface nanocrystallization of 316 Lstainless steel induced by ultrasonic shot peening. Mater Sci Eng A 286:91–95

    Article  Google Scholar 

  14. Lu K, Lu J (1999) Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. Mater Sci Technol 15:193

    Article  MATH  Google Scholar 

  15. Morris DG (1998) Mechanical behaviour of nanostrured materials. Trans Tech, Uetikon-Zurich

    Google Scholar 

  16. Meuers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  Google Scholar 

  17. Nykyforchyn HM, Kyryliv VI, Slobodjan DzV et al (1998) Structural steels surface modification by mechanical pulse treatment for corrosion protection and wear resistance. Surf Coat Technol 100–101: 125–127

    Article  Google Scholar 

  18. Nykyforchyn HM, Kyryliv VI, Bassarab AI (2002) Wear resistance of the mechanical-pulse treatment 40X steel during abrasive friction and cavitation. Mater Sci 38(6):860–864

    Article  Google Scholar 

  19. Powder Diffraction File (1973) Search manual alphabetical listing and search section of frequently encountered phases (1974) Inorganic, Philadelphia

    Google Scholar 

  20. Takaki S (2003) Thermodynamics of nitrogen absorption into solid solution in Fe-Cr-Mn ternary alloys. Mater Sci Forum 215:426–432

    Google Scholar 

  21. Takaki S (2010) Review on the hall-petch relation in ferritic steel. Mater Sci Forum Vols. 654–656: pp. 11–16

    Google Scholar 

  22. Takaki S, Kawasaki K, Kimura Y (2001) Mechanical properties of ultra fine grained steels. J Mater Technol 117(3):359–363

    Article  Google Scholar 

  23. Tao NR, Sui ML, Lu J, Lu K (1999) Surface nanocrystallization of iron induced by ultrasonic shot peening. NanoStruct Mater 11:433–440

    Article  Google Scholar 

  24. Tao NR, Wang ZN, Tong WP (2003) An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater 50:215

    Google Scholar 

  25. Valiev RZ, Islamgaliev RK, Aleksandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Progress Mat Sci 45:103

    Article  Google Scholar 

  26. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hryhoriy Nykyforchyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nykyforchyn, H., Kyryliv, V., Maksymiv, O. (2015). Physical and Mechanical Properties of Surface Nanocrystalline Structures Generated by Severe Thermal-Plastic Deformation. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_2

Download citation

Publish with us

Policies and ethics