Skip to main content

About Some Physical Properties of Water in Nanosystems and the Possible Mechanism of Superconductivity Induction by Water in Compounds \(SrF{{e}_{2}}A{{s}_{2}}\) and \(FeT{{e}_{0,8}}{{S}_{0,2}}\)

  • Conference paper
  • First Online:
Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications

Abstract

Work is devoted to the analysis of properties of water, diffused in the layered compounds \(SrF{{e}_{2}}A{{s}_{2}}\) and \(FeT{{e}_{0,8}}{{S}_{0,2}}\). We offer for the first time the mechanism of effect, recently opened by the Japanese researchers, of inducing superconductivity by water in these compounds. For this purpose, positions of the theory of water molecules condensation in liquid states, developed by J. Preparata from statements of quantum electrodynamics, have been used. Water, diffused in compounds, forms nanosystems, the individual layers, parallel to ferriferous layers of compounds, and at some properties is similar to exclusion zone (EZ) water, which are well described by this theory. Therefore, it is necessary to expect that at low temperatures such nanowater will differ from usual ice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinitsin NI, Petrosjan VI, Elkin VA et al (1999) The special role of system: »millimetric waves—the water environment in the nature». Biomedical radio electronics (in Russian), 1

    Google Scholar 

  2. Preparata G (QED) (1995) Coherence in condensed water, (World Sci. Singapore, 1995) 236 p

    Google Scholar 

  3. Del Giudice E, Spinetti PR, Tedeschi A (2010) Water dynamics at the root of metamorphosis in living organisms. Water 2:566-586

    Google Scholar 

  4. Hiramatsu H, Katase T, Hirano T et al (2009) Water-induced superconductivity in \( \text{SrF}{{\text{e}}_{\text{2A}{{\text{s}}_{\text{2}}}}} \) Phys Rev B 80, 052501

    Google Scholar 

  5. Mizuguchi Y, Deguchi K, Tsuda S et al (2010) Moisture-induced superconductivity in \( \text{FeT}{{\text{e}}_{0,8{{\text{S}}_{0,2}}}} \)Phys Rev B 81, 214510

    Google Scholar 

  6. Subedi AL, Zhang DJ et al (2008) Density functional study of FeS, FeSe, and FeTe: electronic structure, magnetism, phonons, and superconductivity.Phys. Rev. B. 78, 134514

    Google Scholar 

  7. Liu RH, Wu T, Chen H et al (2009) A large iron isotope effect in \({\rm{SmFeA_s}}_{\rm{O1-x}} {\rm{F_x}} \; {\rm{and}} \; {\rm{B}}_{\rm{a_1-x}} {\rm{K}_x} {\rm{Fe_2}} {\rm{As_2}}\)Nature 459 arXiv:0810.2694

    Google Scholar 

  8. Shirage PM, Kihou K, Miyazawa K et al (2009) Inverse iron isotope effect on the transition temperature of the \( \text{(Ba,}\,\text{K) F}{{\text{e}}_{\text{2A}{{\text{s}}_{\text{2}\,\,}}}} \)Phys Rev Lett 103, 257003

    Google Scholar 

  9. Sadovsky MI (2008) High-temperature superconductivity in layered compound, on a basis of iron. Success Phys Sci (in Russian). 178(12):1243-1271

    Google Scholar 

  10. Zhao J, Yao D-X, Li S et al (2008) Low energy spin waves and magnetic interactions in \( \text{SrF}{{\text{e}}}_{\text{2}} {{\text{As}}_{\text{2}}} \)Phys Rev Lett 101167203 arXiv:0808.2455

    Google Scholar 

  11. Ewings RA, Perring TG, Bewley RI High energy spin excitations in \( \text{BaF}{{\text{e}}_{\text{2}}}\text{A}{{\text{s}}_{\text{2}}} \) arXiv: 0808.2836

    Google Scholar 

  12. Izjumov JA, Kurmaev EZ (2008) New a class of high-temperature superconductors in systems. Success Phys Sci (in Russian). 178(2):1307-1334

    Google Scholar 

  13. Kitagawa K, Katayama N, Gotou H et al (2009) Spontaneous formation of a superconducting and antiferromagnetic hybrid state in \( \text{SrF}{{\text{e}}_{\text{2}}{{\text{As}}_{\text{2}}}} \) under high pressure Phys Rev Lett 103, 257002

    Google Scholar 

  14. Arani R, Bono I, Del Giudice E, Preparata. J (1995) QED coherence and the thermodynamics of water. Int J Mod Phys B 9:1813-1841

    Google Scholar 

  15. Del Giudice E, Tedeschi A (2009) Water and the autocatalysis in living matter. Electromagn Med 28:46-54

    Google Scholar 

  16. Kurcz A, Capolupo A, Beige A, Del Giudice E et al (2010) Energy concentration in composite quantum. Phys Rev A 81 063821

    Google Scholar 

  17. Balk M, Bose M, Ertem G et al (2009) Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks. Sci Lett 283:87-92

    Google Scholar 

  18. Kurik MV, Martsenuyk LS (2012) The physical bases of the life. LAP LAMBERT Academic Publishing, Stuttgart, 174 p

    Google Scholar 

  19. Martsenyuk LS, Martsenyuk AS (2008) Questions of interaction of homoeopathic medicinal preparations and electromagnetic radiation of extremely high-frequency range with living organisms. Biomedical radio electronics. (in Russian), 3:56-63

    Google Scholar 

  20. Deguchi K, Mizuguchi Y, Ozaki T et al Superconductivity in \( \text{FeT}{{\text{e}}_{\text{1-x}}} \text{S}_{\text{x}} \) induced by alcohol arXiv:1008.0666

    Google Scholar 

  21. Drozdov AV, Nagorskaya TI, Masyukevich SV (2001) The quant-mechanics aspects of effects of the weak magnetic fields on biological objects.Biophysics (in Russian), 5 (4):740-749

    Google Scholar 

  22. Pyullman BP, Pyullman AP (1965) Quantum biochemistry (M, «World», 1965) (in Russian), 654 p

    Google Scholar 

  23. Gabuda SP (1982) The bounded water. Facts and hypotheses (Novosibirsk: Science. 1982) (in Russian), 99c

    Google Scholar 

  24. Kolesnikov AI et al (2004) Neutron spectroscopy of water in carbon nanotubes. Phys Rev Lett 93, 035503

    Google Scholar 

  25. Kolesnikov AI et al (2006) Anomalous behavior of proton zero point motion in water confined in carbon nanotubes. Phys Rev Lett 97, 247801

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Stepanovna Martseniuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martseniuk, L., Martseniuk, A., Kurik, M. (2015). About Some Physical Properties of Water in Nanosystems and the Possible Mechanism of Superconductivity Induction by Water in Compounds \(SrF{{e}_{2}}A{{s}_{2}}\) and \(FeT{{e}_{0,8}}{{S}_{0,2}}\) . In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_16

Download citation

Publish with us

Policies and ethics