Advertisement

About Some Physical Properties of Water in Nanosystems and the Possible Mechanism of Superconductivity Induction by Water in Compounds \(SrF{{e}_{2}}A{{s}_{2}}\) and \(FeT{{e}_{0,8}}{{S}_{0,2}}\)

  • Ludmila Stepanovna MartseniukEmail author
  • Aleksandr Stepanovich Martseniuk
  • Michail Vasilievich Kurik
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

Work is devoted to the analysis of properties of water, diffused in the layered compounds \(SrF{{e}_{2}}A{{s}_{2}}\) and \(FeT{{e}_{0,8}}{{S}_{0,2}}\). We offer for the first time the mechanism of effect, recently opened by the Japanese researchers, of inducing superconductivity by water in these compounds. For this purpose, positions of the theory of water molecules condensation in liquid states, developed by J. Preparata from statements of quantum electrodynamics, have been used. Water, diffused in compounds, forms nanosystems, the individual layers, parallel to ferriferous layers of compounds, and at some properties is similar to exclusion zone (EZ) water, which are well described by this theory. Therefore, it is necessary to expect that at low temperatures such nanowater will differ from usual ice.

Keywords

Coherent State Usual Water Superconducting State Cooper Pair Quantum Electrodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sinitsin NI, Petrosjan VI, Elkin VA et al (1999) The special role of system: »millimetric waves—the water environment in the nature». Biomedical radio electronics (in Russian), 1Google Scholar
  2. 2.
    Preparata G (QED) (1995) Coherence in condensed water, (World Sci. Singapore, 1995) 236 pGoogle Scholar
  3. 3.
    Del Giudice E, Spinetti PR, Tedeschi A (2010) Water dynamics at the root of metamorphosis in living organisms. Water 2:566-586Google Scholar
  4. 4.
    Hiramatsu H, Katase T, Hirano T et al (2009) Water-induced superconductivity in \( \text{SrF}{{\text{e}}_{\text{2A}{{\text{s}}_{\text{2}}}}} \) Phys Rev B 80, 052501Google Scholar
  5. 5.
    Mizuguchi Y, Deguchi K, Tsuda S et al (2010) Moisture-induced superconductivity in \( \text{FeT}{{\text{e}}_{0,8{{\text{S}}_{0,2}}}} \)Phys Rev B 81, 214510Google Scholar
  6. 6.
    Subedi AL, Zhang DJ et al (2008) Density functional study of FeS, FeSe, and FeTe: electronic structure, magnetism, phonons, and superconductivity.Phys. Rev. B. 78, 134514Google Scholar
  7. 7.
    Liu RH, Wu T, Chen H et al (2009) A large iron isotope effect in \({\rm{SmFeA_s}}_{\rm{O1-x}} {\rm{F_x}} \; {\rm{and}} \; {\rm{B}}_{\rm{a_1-x}} {\rm{K}_x} {\rm{Fe_2}} {\rm{As_2}}\)Nature 459 arXiv:0810.2694Google Scholar
  8. 8.
    Shirage PM, Kihou K, Miyazawa K et al (2009) Inverse iron isotope effect on the transition temperature of the \( \text{(Ba,}\,\text{K) F}{{\text{e}}_{\text{2A}{{\text{s}}_{\text{2}\,\,}}}} \)Phys Rev Lett 103, 257003Google Scholar
  9. 9.
    Sadovsky MI (2008) High-temperature superconductivity in layered compound, on a basis of iron. Success Phys Sci (in Russian). 178(12):1243-1271Google Scholar
  10. 10.
    Zhao J, Yao D-X, Li S et al (2008) Low energy spin waves and magnetic interactions in \( \text{SrF}{{\text{e}}}_{\text{2}} {{\text{As}}_{\text{2}}} \)Phys Rev Lett 101167203 arXiv:0808.2455Google Scholar
  11. 11.
    Ewings RA, Perring TG, Bewley RI High energy spin excitations in \( \text{BaF}{{\text{e}}_{\text{2}}}\text{A}{{\text{s}}_{\text{2}}} \) arXiv: 0808.2836Google Scholar
  12. 12.
    Izjumov JA, Kurmaev EZ (2008) New a class of high-temperature superconductors in systems. Success Phys Sci (in Russian). 178(2):1307-1334Google Scholar
  13. 13.
    Kitagawa K, Katayama N, Gotou H et al (2009) Spontaneous formation of a superconducting and antiferromagnetic hybrid state in \( \text{SrF}{{\text{e}}_{\text{2}}{{\text{As}}_{\text{2}}}} \) under high pressure Phys Rev Lett 103, 257002Google Scholar
  14. 14.
    Arani R, Bono I, Del Giudice E, Preparata. J (1995) QED coherence and the thermodynamics of water. Int J Mod Phys B 9:1813-1841Google Scholar
  15. 15.
    Del Giudice E, Tedeschi A (2009) Water and the autocatalysis in living matter. Electromagn Med 28:46-54Google Scholar
  16. 16.
    Kurcz A, Capolupo A, Beige A, Del Giudice E et al (2010) Energy concentration in composite quantum. Phys Rev A 81 063821Google Scholar
  17. 17.
    Balk M, Bose M, Ertem G et al (2009) Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks. Sci Lett 283:87-92Google Scholar
  18. 18.
    Kurik MV, Martsenuyk LS (2012) The physical bases of the life. LAP LAMBERT Academic Publishing, Stuttgart, 174 pGoogle Scholar
  19. 19.
    Martsenyuk LS, Martsenyuk AS (2008) Questions of interaction of homoeopathic medicinal preparations and electromagnetic radiation of extremely high-frequency range with living organisms. Biomedical radio electronics. (in Russian), 3:56-63Google Scholar
  20. 20.
    Deguchi K, Mizuguchi Y, Ozaki T et al Superconductivity in \( \text{FeT}{{\text{e}}_{\text{1-x}}} \text{S}_{\text{x}} \) induced by alcohol arXiv:1008.0666Google Scholar
  21. 21.
    Drozdov AV, Nagorskaya TI, Masyukevich SV (2001) The quant-mechanics aspects of effects of the weak magnetic fields on biological objects.Biophysics (in Russian), 5 (4):740-749Google Scholar
  22. 22.
    Pyullman BP, Pyullman AP (1965) Quantum biochemistry (M, «World», 1965) (in Russian), 654 pGoogle Scholar
  23. 23.
    Gabuda SP (1982) The bounded water. Facts and hypotheses (Novosibirsk: Science. 1982) (in Russian), 99cGoogle Scholar
  24. 24.
    Kolesnikov AI et al (2004) Neutron spectroscopy of water in carbon nanotubes. Phys Rev Lett 93, 035503Google Scholar
  25. 25.
    Kolesnikov AI et al (2006) Anomalous behavior of proton zero point motion in water confined in carbon nanotubes. Phys Rev Lett 97, 247801Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ludmila Stepanovna Martseniuk
    • 1
    Email author
  • Aleksandr Stepanovich Martseniuk
    • 2
  • Michail Vasilievich Kurik
    • 3
  1. 1.Institute of Nuclear Researches NAS UkraineKievUkraine
  2. 2.National University of Food TechnologyKievUkraine
  3. 3.Institute of physics NAS UkraineKievUkraine

Personalised recommendations