Advertisement

Heat Capacity of 1D Chains of Atom/Molecule Adsorbates in the Grooves of c-SWNT Bundles

  • V. V. Sumarokov
  • M. I. Bagatskii
  • M. S. Barabashko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

The heat capacity of quasi-one-dimensional (1D) chains of Xe atom/N2molecule adsorbates (C Xe, C N2) in the outer grooves of closed single-walled carbon nanotube (c-SWNT) bundles have been first investigated at a temperature range of 2–60 K. Below 3–4 K, the temperature dependencies of C Xe(T) and C N2(T) are linear. The experimental data C Xe have been compared with theory (Šiber). The experimental and theoretical heat capacity curves are close to below 8 K. Above 8 K, the experimental curve C Xe(T) exceeds the theoretical one and the excess increases monotonously with temperature. We assume that the excess is caused mainly by the thermal expansion of 1D chains and the occurrence of vacancies in the 1D chains due to spatial redistribution of the Xe atoms from grooves to the positions near the grooves above 30 K. Below 8 K, the behavior of C N2(T) is qualitatively similar to the theoretical phonon heat capacity of 1D chains of Kr adatoms. Above 8 K, the dependence C N2(T) becomes steeper in comparison with the case of Kr adatoms. This behavior of the heat capacity C N2(T) is due to both the contribution of the rotational degrees of freedom of the N2 molecules and thermal expansion of 1D chains. The Debye temperatures have been estimated for 1D adsorbate chains.

PACS: 65.40.Ba Heat capacity

65.80.-g Thermal properties of small particles, nanocrystals, nanotubes, and other related systems

68.65.-k Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties;81.07.De Nanotubes

Keywords

Heat Capacity Debye Temperature Xenon Atom Total Heat Capacity Spatial Redistribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to V. Manzhelii, Yu. Freiman, M. Strzhemechny, S. Feodosyev, and K. Chishko for helpful discussions.

Electronic address: sumarokov@ilt.kharkov.ua

References

  1. 1.
    Iijima S (1991) Nature 354:56Google Scholar
  2. 2.
    Saito R, Dresselhaus MS, Dresselhaus G (eds) (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonGoogle Scholar
  3. 3.
    Dresselhaus MS, Eklund PC (2010) Adv Phys 49:705Google Scholar
  4. 4.
    Trasca RA, Kostov MK, Cole MW (2003) Phys Rev B 67:035410Google Scholar
  5. 5.
    Teizer W, Hallock RB, Dujardin E, Ebbesen TW (1999) Bull Am Phys Soc 44(1):519; Phys Rev Lett 82:5305 (1999);. Phys Rev Lett 84:1844 (2000)Google Scholar
  6. 6.
    Lasjaunias JC, Biljaković K, Sauvajol JL, Monceau P (2003) Phys Rev Lett 91:025901Google Scholar
  7. 7.
    Calbi MM, Toigo F, Cole MW (2001) Phys Rev Lett 86:5062Google Scholar
  8. 8.
    Diallo SO, Fåk B, Adams MA, Vilches OE, Johnson MR, Schober H, Glyde HR (2009) Eur Phys Lett 88:56005Google Scholar
  9. 9.
    Antsygina TN, Poltavsky II, Chishko KA, Wilson TA, Vilches OE (2005) Low Temp Phys 31:1007Google Scholar
  10. 10.
    Ancilloto F, Barranco M, Pi M (2003) Phys Rev Lett 91:105302Google Scholar
  11. 11.
    Zambano AJ, Talapatra S, Migone AD (2001) Phys Rev B 64:075415Google Scholar
  12. 12.
    Bagatskii MI, Barabashko MS, Dolbin AV, Sumarokov VV (2012) Low Temp Phys 38:523Google Scholar
  13. 13.
    Benedict LX, Louie SG, Cohen ML (1996) Solid State Commun 100:177Google Scholar
  14. 14.
    Hone J, Batlogg B, Benes Z, Johnson AT Fischer JE (2000) Science 289:1730Google Scholar
  15. 15.
    Calbi MM, Cole MW (2002) Phys Rev B 66:115413Google Scholar
  16. 16.
    Šiber A (2003) Phys Rev B 67:165426Google Scholar
  17. 17.
    Tu ZC, Ou-Yang ZC (2003) J Phys Condens Matter 15:6759Google Scholar
  18. 18.
    Pearce JV, Adams MA, Vilches OE, Johnson MR, Glyde HR (2005) Phys Rev Lett 95:185302Google Scholar
  19. 19.
    Full SJ, McNutt JP, Cole MW, Mbaye MT, Gatica SM (2010) J Phys Condens Matter 22:334206Google Scholar
  20. 20.
    Šiber A (2002) Phys Rev B 66:205406Google Scholar
  21. 21.
    Simonyan VV, Johnson JK, Kuznetsova A, Yates JT (2001) J Chem Phys 114:4180Google Scholar
  22. 22.
    Hertel T, Kriebel J, Moos G, Fasel R (2001) AIP Conf Proc 590:181Google Scholar
  23. 23.
    Ulbricht H, Kriebel J, Moos G, Hertel T (2002) Chem Phys Lett 363:252Google Scholar
  24. 24.
    Cole MW, Crespi VH, Stan G, Ebner C, Hartman JM, Moroni S, Boninsegni M (2000) Phys Rev Lett 84:3883Google Scholar
  25. 25.
    Stan G, Bojan MJ, Curtarolo S, Gatica SM, Cole MW (2000) Phys Rev B 62:2173Google Scholar
  26. 26.
    Shai DE, Urban NM, Cole MW (2008) Phys Rev B 77:205427Google Scholar
  27. 27.
    Talapatra S, Zambano AZ, Weber SE, Migone AD (2000) Phys Rev Lett 85:138Google Scholar
  28. 28.
    Eletskii AV (2009) Phys Usp 52:209; Phys Usp 50, 225 (2007); Phys Usp 47, 1119 (2004)Google Scholar
  29. 29.
    Antsygina TN, Poltavsky II, Chishko KA (2006) Phys Rev B 74:205429Google Scholar
  30. 30.
    Antsygina TN, Poltavsky II, Chishko KA (2007) J Low Temp Phys 148:821Google Scholar
  31. 31.
    Antsygina TN, Poltavsky II, Chishko KA (2005) J Low Temp Phys 138:223Google Scholar
  32. 32.
    Dolbin AV, Esel’son VB, Gavrilko VG, Manzhelii VG, Popov SN, Vinnikov NA, Danilenko NI, Sundqvist B (2009) Low Temp Phys 35:484Google Scholar
  33. 33.
    Wilson T, Vilches OE (2003) Low Temp Phys 29:732Google Scholar
  34. 34.
    Talapatra S, Migone AD (2001) Phys Rev Lett 87:206106Google Scholar
  35. 35.
    Talapatra S, Migone AD (2002) Phys Rev 65:045416Google Scholar
  36. 36.
    Talapatra S, Krungleviciute V, Migone AD (2002) Phys Rev Lett 89:246106Google Scholar
  37. 37.
    Weber SE, Talapatra S, Journet C, Zambano A, Migone AD (2000) Phys Rev B 61:13150Google Scholar
  38. 38.
    Dolbin AV, Esel’son VB, Gavrilko VG, Manzhelii VG, Popov SN, Vinnikov NA, Sundqvist B (2010) Low Temp Phys 36:365Google Scholar
  39. 39.
    Manzhelii EV, Gospodarev IA, Feodosyev SB, Godovanaja NV (2012) In 9th international conference on cryocrystals and quantum crystals (CC2012), Odessa, p 63Google Scholar
  40. 40.
    Ramachandran S, Vilches OE (2007) Phys Rev B 76:075404Google Scholar
  41. 41.
    Šiber A (2002) Phys Rev B 66:235414Google Scholar
  42. 42.
    Kostov MK, Mercedes Calbi M, Cole MW (2003) Phys Rev B 68:245403Google Scholar
  43. 43.
    Cvitaš MT, Šiber A (2003) Phys Rev B 67:193401Google Scholar
  44. 44.
    Bagatskii MI, Sumarokov VV, Dolbin AV (2011) Low Temp Phys 37:424Google Scholar
  45. 45.
    Dolbin AV, Esel’son VB, Gavrilko VG, Manzhelii VG, Vinnikov NA, Popov SN, Sundqvist B (2008) Low Temp Phys 34:678Google Scholar
  46. 46.
    Bagatskii MI, Barabashko MS, Dolbin AV, Sumarokov VV, Sundqvist B (2012) Low Temp Phys 38:527Google Scholar
  47. 47.
    Bagatskii MI, Manzhelii VG, Sumarokov VV, Barabashko MS (2013) Low Temp Phys 39:618Google Scholar
  48. 48.
    Bagatskii MI, Barabashko MS, Sumarokov VV (2013) Low Temp Phys 39:441Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • V. V. Sumarokov
    • 1
  • M. I. Bagatskii
    • 1
  • M. S. Barabashko
    • 1
  1. 1.B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations