Impact of Carbon Nanotube on Homocysteine Clusters: MD Simulation

  • Przemysław RaczyńskiEmail author
  • Krzysztof Górny
  • Zygmunt Gburski
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)


The role of homocysteine in the human body is not well known but its level is associated with cardiovascular disease. The pure clusters composed of n = 65 and 2500 homocysteine molecules have been studied by the computer simulation molecular dynamics (MD) method. Among the anticipated applications of the carbon nanotubes is their use in biological sensors, particularly homocysteine nanosensor. We have also examined the impact of a carbon nanotube on the homocysteine clusters. The mean square displacement, diffusion coefficient, and radial distribution function of homocysteine have been calculated for several temperatures, including the physiological (T = 310 K). We interpret the behavior of homocysteine molecules in the pure clusters and in the clusters with carbon nanotube by a qualitative interpretation of physical observables and snapshots of instantaneous configurations.


Molecular Dynamic Simulation Small Cluster Radial Distribution Function Mean Square Displacement Translational Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Calculations were partially performed in ACK CYFRONET AGH on the Rack Server Mars.


  1. 1.
    Graham I, Refsum H, Rosenberg IH, Ueland PM, Shuman JM (1997) Homocysteine metabolism: from basic science to clinical medicine. Springer US, BostonGoogle Scholar
  2. 2.
    McCully KS (1999) The homocysteine revolution: medicine for the new millennium. Keats Pub., Los AngelesGoogle Scholar
  3. 3.
    Carmel R, Jacobsen DW (2011) Homocysteine in health and disease. Cambridge University, CambridgeGoogle Scholar
  4. 4.
    Robinson K (2000) Homocysteine and vascular disease. Springer Netherlands, DordrechtCrossRefGoogle Scholar
  5. 5.
    Frayn KN, Stanner S, British NF (2005) Cardiovascular disease: diet, nutrition and emerging risk factors : the report of a British Nutrition Foundation task force. Published by Blackwell Pub. for the British Nutrition Foundation, Oxford, UK; Ames, Iowa, USAGoogle Scholar
  6. 6.
    Huang C, Zhang L, Wang Z, Pan H, Zhu J (2011) Endothelial progenitor cells are associated with plasma homocysteine in coronary artery disease. Acta Cardiol 66:773–777. doi:10.2143/AC.66.6.2136962Google Scholar
  7. 7.
    Houcher Z, Houcher B, Touabti A, Begag S, Egin Y, Akar N (2012) Nutritional factors, homocysteine and C677T polymorphism of the methylenetetrahydrofolate reductase gene in Algerian subjects with cardiovascular disease. Pteridines 23:14–21CrossRefGoogle Scholar
  8. 8.
    Maitland-Van Der Zee AH, Lynch A, Boerwinkle E, Arnett DK, Davis BR, Leiendecker-Foster C, Ford CE, Eckfeldt JH (2008) Interactions between the single nucleotide polymorphisms in the homocysteine pathway (MTHFR 677C > T, MTHFR 1298 A > C, and CBSins) and the efficacy of HMG-CoA reductase inhibitors in preventing cardiovascular disease in high-risk patients of hypertension: the GenHAT study. Pharmacogenet Genomics 18:651–656CrossRefGoogle Scholar
  9. 9.
    Fakhrzadeh H, Ghotbi S, Larijani B (2007) The role of homocysteine in health and disease. Iran J Diabetes Lipid Disord 7:135–149Google Scholar
  10. 10.
    Nagele P, Tallchief D, Blood J, Sharma A, Kharasch ED (2011) Nitrous oxide anesthesia and plasma homocysteine in adolescents. Anesth Analg 113:843–848. doi:10.1213/ANE.0b013e31822402f5Google Scholar
  11. 11.
    Haroon NN, Marwaha RK, Godbole MM, Gupta SK (2012) Role of B-12 and homocysteine status in determining BMD and bone turnover in young Indians. J Clin Densitom 15:366–373. doi:10.1016/j.jocd.2012.01.006CrossRefGoogle Scholar
  12. 12.
    El Maghraoui A, Ghozlani I, Mounach A, Rezqi A, Oumghar K, Achemlal L, Bezza A, Ouzzif Z (2012) Homocysteine, folate, and vitamin B-12 levels and vertebral fracture risk in postmenopausal women. J Clin Densitom 15:328–333. doi:10.1016/j.jocd.2011.12.001CrossRefGoogle Scholar
  13. 13.
    Enneman AW, van der Velde N, de Jonge R, Heil SG, Stolk L, Hofman A, Rivadeneira F, Zillikens MC, Uitterlinden AG, van Meurs JBJ (2012) The association between plasma homocysteine levels, methylation capacity and incident osteoporotic fractures. Bone 50:1401–1405. doi:10.1016/j.bone.2012.03.013CrossRefGoogle Scholar
  14. 14.
    Van Meurs JBJ, Dhonukshe-Rutten R a. M, Pluijm SMF, van der Klift M, de Jonge R, Lindemans J, de Groot L, Hofman A, Witteman JCM, van Leeuwen J, Breteler MMB, Lips P, Pols H a. P, Uitterlinden AG (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350:2033–2041. doi:10.1056/NEJMoa032546CrossRefGoogle Scholar
  15. 15.
    Bergen NE, Jaddoe VWV, Timmermans S, Hofman A, Lindemans J, Russcher H, Raat H, Steegers-Theunissen RPM, Steegers E a. P (2012) Understanding health behaviours in a cohort of pregnant women at risk of gestational diabetes mellitus: an observational study. BJOG 119:739–751. doi:10.1111/j.1471-0528.2012.03321.xCrossRefGoogle Scholar
  16. 16.
    Gadhok AK, Sinha M, Khunteta R, Vardey SK, Upadhyaya C, Sharma TK, Jha M (2011) Serum homocysteine level and its association with folic acid and vitamin B-12 in the third trimester of pregnancies complicated with intrauterine growth restriction. Clin Lab 57:933–938Google Scholar
  17. 17.
    Mansour A, Harb H, Abdelhafeez M (2011) Diagnostic value of homocysteine and other preeclampsia markers: relationship with severity. Int J Biol Chem 5:227–237Google Scholar
  18. 18.
    Reyna-Villasmil E, Mejia-Montilla J, Torres-Cepeda D, Santos-Bolívar J, Aragon-Charrys J, Reyna-Villasmil N, Bravo-Henríquez A (2012) Efecto de las hormonas sexuales sobre las concentraciones de homocisteína en preeclámpticas y embarazadas normales. Prog Obstet Ginecol 55:226–231CrossRefGoogle Scholar
  19. 19.
    Brozek W, Hassler N, Varga F, Klaushofer K, Paschalis EP (2012) Effect of bisphosphonates on gene expression of fibroblasts cultured in the presence of homocysteine. Bone 51:S8–S8. doi:10.1016/j.bone.2012.08.021CrossRefGoogle Scholar
  20. 20.
    Zoungas S, McGrath BP, Branley P, Kerr PG, Muske C, Wolfe R, Atkins RC, Nicholls K, Fraenkel M, Hutchison BG, Walker R, McNeil JJ (2006) Cardiovascular morbidity and mortality in the atherosclerosis and folic acid supplementation trial (ASFAST) in chronic renal failure. J Am Coll Cardiol 47:1108–1116. doi:10.1016/j.jacc.2005.10.064CrossRefGoogle Scholar
  21. 21.
    Wei Shao AP (2013) Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials. doi:10.1016/j.biomaterials.2013.09.007Google Scholar
  22. 22.
    Dawid A, Gburski Z (2007) Dielectric relaxation of 4-cyano-4-n-pentylbiphenyl (5CB) thin layer adsorbed on carbon nanotube—MD simulation. J Non-Cryst Solids 353:4339–4343. doi:10.1016/j.jnoncrysol.2007.02.072CrossRefADSGoogle Scholar
  23. 23.
    Im O, Li J, Wang M, Zhang LG, Keidar M (2012) Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int J Nanomedicine 7:2087–2099. doi:10.2147/IJN.S29743Google Scholar
  24. 24.
    Raczynski P, Dawid A, Gburski Z (2007) Molecular dynamics (MD) in homocysteine nanosystems—computer simulation. Biomol Eng 24:577–581. doi:10.1016/j.bioeng.2007.08.011CrossRefGoogle Scholar
  25. 25.
    Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A (2013) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65:1899–1920. doi:10.1016/j.addr.2013.07.006CrossRefGoogle Scholar
  26. 26.
    Gburski Z, Górny K, Raczynski P (2010) The impact of a carbon nanotube on the cholesterol domain localized on a protein surface. Solid State Commun 150:415–418. doi:10.1016/j.ssc.2009.12.005CrossRefADSGoogle Scholar
  27. 27.
    Raczynski P, Gorny K, Pabiszczak M, Gburski Z (2013) Nanoindentation of biomembrane by carbon nanotubes—MD simulation. Comput Mater Sci 70:13–18. doi:10.1016/j.commatsci.2012.12.031CrossRefGoogle Scholar
  28. 28.
    Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312. doi:10.1006/jcph.1999.6201CrossRefzbMATHADSGoogle Scholar
  29. 29.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289CrossRefGoogle Scholar
  30. 30.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38. doi:10.1016/0263-7855(96)00018-5Google Scholar
  31. 31.
    Nelson M, Humphrey W, Kufrin R, Gursoy A, Dalke A, Kale L, Skeel R, Schulten K (1995) Mdscope—a visual computing environment for structural biology. Comput Phys Commun 91:111–133. doi:10.1016/0010-4655(95)00045-HCrossRefADSGoogle Scholar
  32. 32.
    MacKerell AD Jr, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265. doi:10.1002/1097-0282 (2000) 56:43.0.CO;2-WCrossRefGoogle Scholar
  33. 33.
    Alexiadis A, Kassinos S (2008) Molecular simulation of water in carbon nanotubes. Chem Rev 108:5014–5034. doi:10.1021/cr078140fCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Przemysław Raczyński
    • 1
    Email author
  • Krzysztof Górny
    • 1
  • Zygmunt Gburski
    • 1
  1. 1.Institute of PhysicsUniversity of SilesiaKatowicePoland

Personalised recommendations