Skip to main content

Impact of Carbon Nanotube on Homocysteine Clusters: MD Simulation

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 156))

Abstract

The role of homocysteine in the human body is not well known but its level is associated with cardiovascular disease. The pure clusters composed of n = 65 and 2500 homocysteine molecules have been studied by the computer simulation molecular dynamics (MD) method. Among the anticipated applications of the carbon nanotubes is their use in biological sensors, particularly homocysteine nanosensor. We have also examined the impact of a carbon nanotube on the homocysteine clusters. The mean square displacement, diffusion coefficient, and radial distribution function of homocysteine have been calculated for several temperatures, including the physiological (T = 310 K). We interpret the behavior of homocysteine molecules in the pure clusters and in the clusters with carbon nanotube by a qualitative interpretation of physical observables and snapshots of instantaneous configurations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Graham I, Refsum H, Rosenberg IH, Ueland PM, Shuman JM (1997) Homocysteine metabolism: from basic science to clinical medicine. Springer US, Boston

    Google Scholar 

  2. McCully KS (1999) The homocysteine revolution: medicine for the new millennium. Keats Pub., Los Angeles

    Google Scholar 

  3. Carmel R, Jacobsen DW (2011) Homocysteine in health and disease. Cambridge University, Cambridge

    Google Scholar 

  4. Robinson K (2000) Homocysteine and vascular disease. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  5. Frayn KN, Stanner S, British NF (2005) Cardiovascular disease: diet, nutrition and emerging risk factors : the report of a British Nutrition Foundation task force. Published by Blackwell Pub. for the British Nutrition Foundation, Oxford, UK; Ames, Iowa, USA

    Google Scholar 

  6. Huang C, Zhang L, Wang Z, Pan H, Zhu J (2011) Endothelial progenitor cells are associated with plasma homocysteine in coronary artery disease. Acta Cardiol 66:773–777. doi:10.2143/AC.66.6.2136962

    Google Scholar 

  7. Houcher Z, Houcher B, Touabti A, Begag S, Egin Y, Akar N (2012) Nutritional factors, homocysteine and C677T polymorphism of the methylenetetrahydrofolate reductase gene in Algerian subjects with cardiovascular disease. Pteridines 23:14–21

    Article  Google Scholar 

  8. Maitland-Van Der Zee AH, Lynch A, Boerwinkle E, Arnett DK, Davis BR, Leiendecker-Foster C, Ford CE, Eckfeldt JH (2008) Interactions between the single nucleotide polymorphisms in the homocysteine pathway (MTHFR 677C > T, MTHFR 1298 A > C, and CBSins) and the efficacy of HMG-CoA reductase inhibitors in preventing cardiovascular disease in high-risk patients of hypertension: the GenHAT study. Pharmacogenet Genomics 18:651–656

    Article  Google Scholar 

  9. Fakhrzadeh H, Ghotbi S, Larijani B (2007) The role of homocysteine in health and disease. Iran J Diabetes Lipid Disord 7:135–149

    Google Scholar 

  10. Nagele P, Tallchief D, Blood J, Sharma A, Kharasch ED (2011) Nitrous oxide anesthesia and plasma homocysteine in adolescents. Anesth Analg 113:843–848. doi:10.1213/ANE.0b013e31822402f5

    Google Scholar 

  11. Haroon NN, Marwaha RK, Godbole MM, Gupta SK (2012) Role of B-12 and homocysteine status in determining BMD and bone turnover in young Indians. J Clin Densitom 15:366–373. doi:10.1016/j.jocd.2012.01.006

    Article  Google Scholar 

  12. El Maghraoui A, Ghozlani I, Mounach A, Rezqi A, Oumghar K, Achemlal L, Bezza A, Ouzzif Z (2012) Homocysteine, folate, and vitamin B-12 levels and vertebral fracture risk in postmenopausal women. J Clin Densitom 15:328–333. doi:10.1016/j.jocd.2011.12.001

    Article  Google Scholar 

  13. Enneman AW, van der Velde N, de Jonge R, Heil SG, Stolk L, Hofman A, Rivadeneira F, Zillikens MC, Uitterlinden AG, van Meurs JBJ (2012) The association between plasma homocysteine levels, methylation capacity and incident osteoporotic fractures. Bone 50:1401–1405. doi:10.1016/j.bone.2012.03.013

    Article  Google Scholar 

  14. Van Meurs JBJ, Dhonukshe-Rutten R a. M, Pluijm SMF, van der Klift M, de Jonge R, Lindemans J, de Groot L, Hofman A, Witteman JCM, van Leeuwen J, Breteler MMB, Lips P, Pols H a. P, Uitterlinden AG (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350:2033–2041. doi:10.1056/NEJMoa032546

    Article  Google Scholar 

  15. Bergen NE, Jaddoe VWV, Timmermans S, Hofman A, Lindemans J, Russcher H, Raat H, Steegers-Theunissen RPM, Steegers E a. P (2012) Understanding health behaviours in a cohort of pregnant women at risk of gestational diabetes mellitus: an observational study. BJOG 119:739–751. doi:10.1111/j.1471-0528.2012.03321.x

    Article  Google Scholar 

  16. Gadhok AK, Sinha M, Khunteta R, Vardey SK, Upadhyaya C, Sharma TK, Jha M (2011) Serum homocysteine level and its association with folic acid and vitamin B-12 in the third trimester of pregnancies complicated with intrauterine growth restriction. Clin Lab 57:933–938

    Google Scholar 

  17. Mansour A, Harb H, Abdelhafeez M (2011) Diagnostic value of homocysteine and other preeclampsia markers: relationship with severity. Int J Biol Chem 5:227–237

    Google Scholar 

  18. Reyna-Villasmil E, Mejia-Montilla J, Torres-Cepeda D, Santos-Bolívar J, Aragon-Charrys J, Reyna-Villasmil N, Bravo-Henríquez A (2012) Efecto de las hormonas sexuales sobre las concentraciones de homocisteína en preeclámpticas y embarazadas normales. Prog Obstet Ginecol 55:226–231

    Article  Google Scholar 

  19. Brozek W, Hassler N, Varga F, Klaushofer K, Paschalis EP (2012) Effect of bisphosphonates on gene expression of fibroblasts cultured in the presence of homocysteine. Bone 51:S8–S8. doi:10.1016/j.bone.2012.08.021

    Article  Google Scholar 

  20. Zoungas S, McGrath BP, Branley P, Kerr PG, Muske C, Wolfe R, Atkins RC, Nicholls K, Fraenkel M, Hutchison BG, Walker R, McNeil JJ (2006) Cardiovascular morbidity and mortality in the atherosclerosis and folic acid supplementation trial (ASFAST) in chronic renal failure. J Am Coll Cardiol 47:1108–1116. doi:10.1016/j.jacc.2005.10.064

    Article  Google Scholar 

  21. Wei Shao AP (2013) Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials. doi:10.1016/j.biomaterials.2013.09.007

    Google Scholar 

  22. Dawid A, Gburski Z (2007) Dielectric relaxation of 4-cyano-4-n-pentylbiphenyl (5CB) thin layer adsorbed on carbon nanotube—MD simulation. J Non-Cryst Solids 353:4339–4343. doi:10.1016/j.jnoncrysol.2007.02.072

    Article  ADS  Google Scholar 

  23. Im O, Li J, Wang M, Zhang LG, Keidar M (2012) Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int J Nanomedicine 7:2087–2099. doi:10.2147/IJN.S29743

    Google Scholar 

  24. Raczynski P, Dawid A, Gburski Z (2007) Molecular dynamics (MD) in homocysteine nanosystems—computer simulation. Biomol Eng 24:577–581. doi:10.1016/j.bioeng.2007.08.011

    Article  Google Scholar 

  25. Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A (2013) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65:1899–1920. doi:10.1016/j.addr.2013.07.006

    Article  Google Scholar 

  26. Gburski Z, Górny K, Raczynski P (2010) The impact of a carbon nanotube on the cholesterol domain localized on a protein surface. Solid State Commun 150:415–418. doi:10.1016/j.ssc.2009.12.005

    Article  ADS  Google Scholar 

  27. Raczynski P, Gorny K, Pabiszczak M, Gburski Z (2013) Nanoindentation of biomembrane by carbon nanotubes—MD simulation. Comput Mater Sci 70:13–18. doi:10.1016/j.commatsci.2012.12.031

    Article  Google Scholar 

  28. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312. doi:10.1006/jcph.1999.6201

    Article  MATH  ADS  Google Scholar 

  29. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Google Scholar 

  31. Nelson M, Humphrey W, Kufrin R, Gursoy A, Dalke A, Kale L, Skeel R, Schulten K (1995) Mdscope—a visual computing environment for structural biology. Comput Phys Commun 91:111–133. doi:10.1016/0010-4655(95)00045-H

    Article  ADS  Google Scholar 

  32. MacKerell AD Jr, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265. doi:10.1002/1097-0282 (2000) 56:43.0.CO;2-W

    Article  Google Scholar 

  33. Alexiadis A, Kassinos S (2008) Molecular simulation of water in carbon nanotubes. Chem Rev 108:5014–5034. doi:10.1021/cr078140f

    Article  Google Scholar 

Download references

Acknowledgments

Calculations were partially performed in ACK CYFRONET AGH on the Rack Server Mars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Raczyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Raczyński, P., Górny, K., Gburski, Z. (2015). Impact of Carbon Nanotube on Homocysteine Clusters: MD Simulation. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-06611-0_14

Download citation

Publish with us

Policies and ethics