The Effect of Sintering Temperature on Linear and Nonlinear Optical Properties of YAG Nanoceramics

  • V. Ya. GayvoronskyEmail author
  • A. S. Popov
  • M. S. Brodyn
  • A. V. Uklein
  • V. V. Multian
  • O. O. Shul’zhenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)


Recent improvements in powder synthesis and ceramics sintering made it possible to fabricate high-quality optical materials. The work is devoted to the structural and optical characterization of the (\({Y_3}{Al_5}{O_{12}}\), YAG) ceramics prepared by high-pressure low-temperature technique. The structural properties of the studied ceramic samples was obtained by X-ray diffraction. The studies of the total and in-line transmittance as well as optical scattering indicatrices were performed in visible and NIR ranges. The scatterer size \(\sim200\) nm was estimated by Rayleigh–Gans–Debye model. It was shown that the studied samples demonstrate high transparency at 1064 nm. The nonlinear optical characterization of the samples was done by the self-action of the picosecond laser pulses at 1064 nm. The measured nonlinear optical response (\( \operatorname{Im}({{\chi }^{(3)}})\,\sim \,{{10}^{-11}}\,\text{esu} \) esu) showed significant dependence on the sintering temperature variation.


Sinter Temperature Ceramic Sample Total Transmittance Laser Beam Profile Forward Hemisphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge V. Yu. Timoshenko, G. I. Dovbeshko and T. E. Konstantinova for the assistance in sample characterization and discussions. This work was partially supported by NASU V-166 and VC-157 grants.


  1. 1.
    Coble RL (1962) Sintering alumina: effect of atmospheres. J Am Ceram Soc 45(3):123–127CrossRefGoogle Scholar
  2. 2.
    Wang S, Zhang J, Luo D et al (2013) Transparent ceramics: processing, materials and applications. Prog Solid State Chem 41:20–54CrossRefGoogle Scholar
  3. 3.
    Li J-G, Ikegami T, Mori T (2005) Fabrication of transparent, sintered Sc2O3 ceramics. J Am Ceram Soc 88(4):817–821CrossRefGoogle Scholar
  4. 4.
    Ikegami T, Li J-G, Mori T, Moriyoshi Y (2002) Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide. J Am Ceram Soc 85(7):1725–1729CrossRefGoogle Scholar
  5. 5.
    Yadegari M, Asadian M, Saeedi H et al (2013) Formation of gaseous cavity defect during growth of Nd:YAG single crystals. J Cryst Growth 367:57–61CrossRefADSGoogle Scholar
  6. 6.
    Brandle C (2004) Czochralski growth of oxides. J Cryst Growth 264:593–604CrossRefADSGoogle Scholar
  7. 7.
    Muller G, Friedrich J (2005) Crystal growth, bulk: methods. In: Bassani F, Liedl LG, Wyder P (eds) Encyclopedia of condensed matter Physics. Elsevier Ltd., Oxford, pp 262–274Google Scholar
  8. 8.
    Tang F, Cao Y, Huang J et al (2012) Fabrication and laser behavior of composite yb:yag ceramic. J Am Ceram Soc 95(1):56–69CrossRefGoogle Scholar
  9. 9.
    Ikesue A, Aung YL (2006) Synthesis and performance of advanced ceramic lasers. J Am Ceram Soc 89(6):1936–1944CrossRefGoogle Scholar
  10. 10.
    Yagi H, Yanagitani T, Numazawa T, Ueda K (2007) The physical properties of transparent Y3Al5O12 elastic modulus at high temperature and thermal conductivity at low temperature. Ceram Int 33(5)711–714CrossRefGoogle Scholar
  11. 11.
    Yagi H, Yanagitani T, Takaichi K et al (2007) Characterizations and laser performances of highly transparent Nd\(^3+:Y_3\)Al5 O12 laser ceramics. Opt Mater 29(10):1258–1262CrossRefADSGoogle Scholar
  12. 12.
    Mezeix L, Green DJ (2006) Comparison of the mechanical properties of single crystal and polycrystalline yttrium aluminum garnet. Int J Appl Ceram Technol 3(2):166–176CrossRefGoogle Scholar
  13. 13.
    de With G, van Dijk H (1984) Translucent Y3Al5O12 ceramics. Mater Res Bull 19(12):1669–1674CrossRefGoogle Scholar
  14. 14.
    Mulder C, de With G (1985) Translucent Y3Al5O12 ceramics: electron microscopy characterization. Solid State Ionics 16:81–86CrossRefGoogle Scholar
  15. 15.
    Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc 78(4):1033–1040CrossRefADSGoogle Scholar
  16. 16.
    Dong J, Shirakawa A, Ueda K et al (2007) Laser-diode pumped heavy-doped Yb:YAG ceramic lasers. Opt Lett 32(13):1890–1892CrossRefADSGoogle Scholar
  17. 17.
    Lu J, Ueda K-i, Yagi H et al (2002) Neodymium doped yttrium aluminum garnet (Y3Al5 O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials. J Alloys Compd 341(1–2):220–225CrossRefGoogle Scholar
  18. 18.
    Zych E, Brecher C, Lingertat H (1998) Host-associated luminescence from YAG optical ceramics under gamma and optical excitation. J Lumin 78(2):121–134CrossRefGoogle Scholar
  19. 19.
    Nikl M, Mihokov E, Mare J et al (2000) Traps and timing characteristics of LuAG:Ce\(^3+\) scintillator. Phys Status Solidi A 181(1):R10–R12CrossRefADSGoogle Scholar
  20. 20.
    Zou Y, He D (2010) Nanosintering mechanism of MgAl2 O4 transparent ceramics under high pressure. Mater Chem Phys 123:529–533Google Scholar
  21. 21.
    Liu K, He D, Wang H et al (2012) High-pressure sintering mechanism of yttrium aluminum garnet (Y3 Al5 O12) transparent nanoceramics. Scr Mater 66:319–322CrossRefGoogle Scholar
  22. 22.
    Khvostantsev L, Vereshchagin L, Novikov A (1977) Device of toroid type for high pressure generation. High Temp High Press 9:637–639Google Scholar
  23. 23.
    Bass M, DeCusatis C, Enoch J et al (2009) Handbook of optics, 3rd edn, vol IV: optical properties of materials, nonlinear optics, quantum optics (set). Handbook of optics, McGraw-Hill Education. ISBN: 9780071498920Google Scholar
  24. 24.
    Grazulis S, Daskevic A, Merkys A et al (2012) Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40:D420–D427CrossRefGoogle Scholar
  25. 25.
    Hreniak D, Gierlotka S, Lojkowski W et al (2005) High-pressure induced structural decomposition of re-doped YAG nanoceramics. Solid State Phenomena 106:17–22CrossRefGoogle Scholar
  26. 26.
    Lukowiak A, Wignusz R, Maczka M et al (2010) IR and Raman spectroscopy study of YAG nanoceramics. Chem Phys Lett 494:279–283ADSGoogle Scholar
  27. 27.
    Makinson J, Lee J, Magner S et al (2000) X-rat diffraction signatures of defects in nanocrystalline materials. Adv X-Ray Anal 42:407–411Google Scholar
  28. 28.
    Gayvoronsky VYa, Kopylovsky MA, Vishnyakov EA et al (2009) Optical and nonlinear optical characterization of nanostructured oxyhydroxide of aluminium. Func Mat 16:136–140Google Scholar
  29. 29.
    Borshch A, Brodyn M, Gayvoronsky V et al (2004) Simulation of an experimental setup for measurements of light scattering by porous films. Ukr J Phys 49(2):196–202Google Scholar
  30. 30.
    Gayvoronsky V, Timoshenko V , Brodyn M et al (2005) Giant nonlinear optical response of nanoporous anatase layers. Appl Phys B 80:97–100CrossRefADSGoogle Scholar
  31. 31.
    Qin X, Yang H, Zhou G et al (2011) Synthesis of submicron-sized spherical Y2 O3 powder for transparent YAG ceramics. Mater Res Bull 46:170–174CrossRefGoogle Scholar
  32. 32.
    von Sellmeier W (1871) Zur erklarung der abnormen farbenfolge in spectrum einiger substanzen. Ann Phys Chem 219:272–282Google Scholar
  33. 33.
    Vovk E, Deineka T, Doroshenko A et al (2009) Production of the Y3 Al5 O12 transparent nanostructured ceramics. J Superhard Mater 31(4):252–259CrossRefGoogle Scholar
  34. 34.
    Dmitruk N, Goncharenko A, Venger E (2009) Optics of small particles and composite media. Naukova Dumka Kyiv, ISBN: 978–966-00–0948-8Google Scholar
  35. 35.
    Hulst H, van de Hulst H (1957) Light scattering: by small particles. Dover Books on Physics Series. DOVER PUBN Incorporated, ISBN: 9780486642284Google Scholar
  36. 36.
    Apetz R, van Bruggen MPB (2003) Transparent alumina: a light-scattering model. J Am Ceram Soc 86(3):480–486CrossRefGoogle Scholar
  37. 37.
    Chen J, Lu TC, Xu Y et al (2008) Ab initio study of a charged vacancy in yttrium aluminum garnet (Y3 Al5 O12). J Phys Condens Matter 20(32):32521–2CrossRefGoogle Scholar
  38. 38.
    Pritula I, Gayvoronsky V, Kolybaeva M et al (2011) Effect of incorporation of titanium dioxide nanocrystals on bulk properties of KDP crystals. Opt Mat 33:623–630CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • V. Ya. Gayvoronsky
    • 1
    Email author
  • A. S. Popov
    • 1
  • M. S. Brodyn
    • 1
  • A. V. Uklein
    • 1
  • V. V. Multian
    • 1
  • O. O. Shul’zhenko
    • 2
  1. 1.Institute of Physics NASUKievUkraine
  2. 2.V. N. Bakul Institute for Superhard Materials NASUKievUkraine

Personalised recommendations