Technological Aspects of Corrosion-Resistant Steels Surfacing by Intense Relativistic Electron Beams

  • V. V. Belozerov
  • S. E. Donets
  • V. F. Klepikov
  • V. F. Kivshik
  • V. V. Lytvynenko
  • Yu. F. Lonin
  • A. G. Ponomarev
  • V. T. Uvarov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

Intense tubular relativistic electron beams are a promising tool for a number of practical applications, such as obtaining nanodispersed powder materials, surface properties modification of products, remote surfacing, etc. In current technologies for obtaining of nanopowder materials, one of the leading techniques is one based on the materials handling concentrated flows of energy. Using the various technological equipment (pulse current generators, accelerators), energy is inputted into the material in the form of intense impulse current, the plasma flows of charged particle beams. Each of the specified types of impact is characterized by a certain decomposition mechanism of processed materials to micro- and nano-sized state. Thus, the action of intense pulsed currents based on the thermal evaporation of a melt conductor with its subsequent condensation in liquid, the use of plasma flows and charged particle beams also involves evaporation and condensation of a material in a vacuum or in a special atmosphere.

Keywords

Relativistic Electron Beam Charged Particle Beam Ablation Mode Steel 12Cr21Ni5Ti Electroplastic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dorovskoj VM, Elesin LA, Stoliarov VI et al (2006) Research of yields of an electrical explosion of titanium foils by an electron microscope. Appl Phys 4(28): 28–34Google Scholar
  2. 2.
    Naugolnykh KA, Roy NA (1971) Elektricheskiye razryady v vode (M.: Nauka)Google Scholar
  3. 3.
    Muller G, Schultheiss C (1994) Proc Beams II, p 833Google Scholar
  4. 4.
    Donets SE, Kivshik VF, Klepikov VF, Lytvynenko VV, Ponomarev AG, Uvarov VT (2011) Fizika i khimiya obrabotki materialov 2(8)Google Scholar
  5. 5.
    Bazaleev NI, Donets SE, Klepikov VF et al (2005) In Tezisy 7-oy Mezhd. konf. Fizicheskiye yavleniya v tverdykh telakh, KharkovGoogle Scholar
  6. 6.
    Gulyayev AP (1986) Metallovedeniye (M.: Metallurgiya)Google Scholar
  7. 7.
    Uvarov VT, Tkach JV, Gadetskiy NP, Skachek GV, Ponomarev AG, Kivshik VF, Gaponenko NI, Kozachek AS, Prasol YA (1984) Preprint KhPTI 84 − 30, (M.:TSNIIatominform)Google Scholar
  8. 8.
    Donets SE, Ledenev VV, Lytvynenko VV (2008) Vestnik NTU KHPI. Tekhnika i elektrofizika vysokih napryazeniy 44: 39–44Google Scholar
  9. 9.
    Winegard WC (1964) An introduction to the solidification of metals (London)Google Scholar
  10. 10.
    Kaganov MI, Kravchenko YV, Natsik VD (1974) Physics-Uspekhi 6:878Google Scholar
  11. 11.
    Spitsyn VI, Trotskiy OA (1985) Elektroplasticheskaya deformatsiya metallov (M.: Nauka)Google Scholar
  12. 12.
    Belozerov VV, Donets SE, Klepikov VF, Kivshik VF, Lytvynenko VV, Lonin JuF, Ponomarev AG, Uvarov VT (2011)Physical and mechanical properties of steels 12H21N5T and 08H18N10T irradiated by the highcurrent tubular relativistic electron beam under ablation. Phys Surf Eng 9(2):170Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • V. V. Belozerov
    • 1
  • S. E. Donets
    • 2
  • V. F. Klepikov
    • 2
  • V. F. Kivshik
    • 2
  • V. V. Lytvynenko
    • 2
  • Yu. F. Lonin
    • 3
  • A. G. Ponomarev
    • 3
  • V. T. Uvarov
    • 3
  1. 1.National Technical University “KhPI”Ministry of Education and Science of UkraineKharkivUkraine
  2. 2.Institute of Electrophysics and Radiation TechnologiesNational Academy of Sciences of UkraineKharkivUkraine
  3. 3.National Science Center Kharkov, Institute of Physics and TechnologyNational Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations