Advertisement

Endohedral Fullerene Complexes. Which and How Many Small Molecules Can Be Inserted into Fullerenes and a Carbon Nanotube?

  • Helena DodziukEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 156)

Abstract

Endohedral fullerene complexes involving C60, C70, and C50H10 nanotubes, especially those containing small molecular guests inside, are reviewed and the calculations of their stability are presented.

Keywords

Hydrogen Molecule Fullerene Cage Neon Atom Endohedral Fullerene Methyl Halide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kroto HW (1997) Symmetry, space, stars, and C60 (Nobel lecture). Angew Chem Int Ed 36:1579–1593Google Scholar
  2. 2.
    Kroto HW (1992) C60: buckminsterfullerene, the celestial sphere that fell to earth. Angew Chem Int Ed 31:111–129Google Scholar
  3. 3.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163 doi:10.1038/318162a0Google Scholar
  4. 4.
    Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Kroto HW, Tittel FK, Smalley RE (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107:7779–7780Google Scholar
  5. 5.
    Stoddart JF (1991) The third allotropic form of carbon. Angew Chem Int Ed Engl 30:70–71Google Scholar
  6. 6.
    Cong H, Yu B, Akasaka T, Lu X. (2013) Endohedral metallofullerenes: an unconventional core -shell coordination union. Coord Chem Rev 257:2880–2898Google Scholar
  7. 7.
    Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41:7723–7760Google Scholar
  8. 8.
    Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113Google Scholar
  9. 9.
    Dodziuk H (2011) Endohedral fullerene complexes and in-out isomerism in perhydrogenated fullerenes. Why the carbon cages cannot be used as the hydrogen containers? In: Graovac A, Ori O, Cataldo F (eds) Mathematics and topology of fullerenes. Springer, Hamburg, pp 117–151Google Scholar
  10. 10.
    Pupysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage. Nano Lett 8:767–774Google Scholar
  11. 11.
    Yang C-K (2007) Density functional calculation of hydrogen-filled C60 molecules. Carbon 45:2451–2453Google Scholar
  12. 12.
    Yang C-K (2008) Reply to the commentary on “density functional calculation of hydrogen-filled C60 molecules”. Carbon 46:705–705Google Scholar
  13. 13.
    Turker L, Erkoc S (2003) AM1 treatment of endohedrally hydrogen doped fullerene, nH2@C60. J Mol Struct 638:37–40Google Scholar
  14. 14.
    Turker L, Erkoc S (2006) Comment on “Modeling complexes of H2 molecules in fullerenes” by H. Dodziuk. Chem Phys Lett 426:222–223Google Scholar
  15. 15.
    Cioslowski J (1991) Endohedral chemistry: electronic structures of molecules trapped inside the C60 cage. J Am Chem Soc 113:4139–4141Google Scholar
  16. 16.
    Dodziuk H, Dolgonos G, Lukin O (2001) Molecular mechanics study of endohedral fullerene complexes with small molecules. Carbon 39:1907–1911Google Scholar
  17. 17.
    Murata M, Maeda S, Morinaka Y, Murata Y, Komatsu K (2008) Synthesis and reaction of fullerene C70 encapsulating two molecules of H2. J Am Chem Soc 130:15800–15801Google Scholar
  18. 18.
    Dodziuk H. (2005) Modeling complexes of H2 molecules in fullerenes. Chem Phys Lett 410:39–41Google Scholar
  19. 19.
    Korona T, Dodziuk H (2011) Small molecules in C60 and C70. Which complexes could be stabilized? J Chem Theory Comp 7:1476-1483. dx.doi.org/10.1021/ct200111aGoogle Scholar
  20. 20.
    Korona T, Hesselmann M, Dodziuk H (2009) Symmetry-adapted perturbation theory applied to endohedral fullerene complexes: a stability study of H2@C60 and 2H2@C60. J Chem Theory Comp 5:1585–1596Google Scholar
  21. 21.
    Dodziuk H, Korona T, Lomba E, Bores CJ (2012) A carbon nanotube container: complexes of C50H10 with small molecules. Chem. Theor. Comp. 8:4546–4555Google Scholar
  22. 22.
    Dresselhaus MS, Dresselhaus G, Eklund PC, P. C (1995) Science of fullerenes and carbon nanotubes. Academic, San Diego, pp. 1–2Google Scholar
  23. 23.
    Herzberg G (1945) Infrared and Raman spectra of polyatomic molecules. Lancaster Press, Lancaster, p. 12Google Scholar
  24. 24.
    Botchvar DE, Galpern EG (1973) About hypothetical systems: carbododecahedron, s-icosaedron and carbo-s-icosaedron (in Russian). Dokl. AN SSSR 209:610Google Scholar
  25. 25.
    Rohlfing EA, Cox DM, Kaldor A (1984) Production and characterization of supersonic carbon cluster beams. J Chem Phys 81:3322Google Scholar
  26. 26.
    Krätschmer W, Fostiropoulos K, Huffmann DR (1990) The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chem Phys Lett 170:167Google Scholar
  27. 27.
    Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. Chem Commun 20:1423–1425Google Scholar
  28. 28.
    Yannoni CS, Bernier PP, Meier G, Salem JR (1991) NMR determination of the bond lengths in C60. J Am Chem Soc 113:3190–3192Google Scholar
  29. 29.
    Liu S, Lu YJ, Kappes MM, Ibers JA (1991) The structure of the C60 molecule-X-ray crystal structure determination of a twin at 110K. Science 254(5030):408–410Google Scholar
  30. 30.
    Dodziuk H, Nowinski KS (1998) ‘In’-‘out’ topological isomerism. Should rotaxanes and endohedral fullerene complexes be involved? Tetrahedron 54:2917–2930Google Scholar
  31. 31.
    Dodziuk H, Nowinski KS (1996) Horror vacui or topological in-out isomerism in perhydrogenated fullerenes. Part 1. C60H60 and monoalkylated perhydrogenated fullerenes. Chem Phys Lett 249:406–412Google Scholar
  32. 32.
    Dodziuk H (2007) Modeling the structure of fullerenes and their endohedral complexes involving small molecules with nontrivial topological properties. J Nanosci Nanotechnol 7:1102–1110Google Scholar
  33. 33.
    Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307:238–240Google Scholar
  34. 34.
    Ge M, Nagel U, Hüvonen D, Room T, Mamone S, Levitt MH, Carravetta M, Murata Y, Komatsu K, Lei X, Turro NJ (2011) Interaction potential and infrared absorption of endohedral H2 in C60. J Chem Phys 135:114511Google Scholar
  35. 35.
    Tanabe F, Murata M, Murata Y, Komatsu K (2006) Nippon Kagakkai Koen Yokoshu 86:1282Google Scholar
  36. 36.
    Holleman I, Robyr P, Kentgens APM, Meier BH, Meijer G (1999) Motion of CO molecules in solid C60 probed by solid-state NMR. J Am Chem Soc 121:199–207Google Scholar
  37. 37.
    Peres T, Cao BP, Cui WD, Lifshitz C, Khong A, Cross RJ, Saunders M (2001) Some new diatomic molecule containing endohedral fullerenes. Int J Mass Spectr 210:241–247Google Scholar
  38. 38.
    Suetsuna T, Dragoe N, Harneit W, Weidinger A, Shimotani S, Ito S, Takagi H, Kitazawa K (2002) Separation of N2@C60 and N@C60. Chem Eur J 8:5079–5083Google Scholar
  39. 39.
    Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333:613–616Google Scholar
  40. 40.
    Zhang R, Murata M, Wakamiya A, Murata Y (2013) Synthesis and X-ray structure of endohedral fullerene C60 dimer encapsulating a water molecule in each C60 cage. Chem Lett 42:879–881Google Scholar
  41. 41.
    Goedde B, Waiblinger M, Jakes P, Weiden N, Dinse KP, Weidinger A (2001) “Nitrogen doped” C60 dimers (N@C60 -C60). Chem Phys Lett 334:12–17Google Scholar
  42. 42.
    Zhang J, Porfyrakis K, Morton JJL, Sambrook MR, Harmer J, Xiao L, Ardavan A, Briggs GAD (2008) Photoisomerization of a fullerene dimer. J Phys Chem C 112:2802–2804Google Scholar
  43. 43.
    Farrington BJ, Jevric M, Rance GA, Ardavan A, Khlobystov AN, Briggs GAD, Porfyrakis K (2012)Chemistry at the nanoscale: synthesis of an N@C60-N@C60 endohedral fullerene dimer. Angew Chem Int Ed 51:3587–3590Google Scholar
  44. 44.
    Plant SR, Jevric M, Morton JJL, Ardavan A, Khlobystov AN, Briggs GAD, Porfyrakis K (2013) A two-step approach to the synthesis of N@C60 fullerene dimers for molecular qubits. Chem Sci 4 :2971–2975Google Scholar
  45. 45.
    Mordkovich VZ (2000) The observation of large concentric shell fullerenes and fullerene-like nanoparticles in laser pyrolysis carbon blacks. Chem Mater 12:2813Google Scholar
  46. 46.
    Iijima S (1980) Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth 50:675Google Scholar
  47. 47.
    Tan Y-Z, Xie ST, Huang RB, Zheng LS (2009) The stabilization of fused-pentagon fullerene molecules Nature Chem 1:450–460Google Scholar
  48. 48.
    Shustova NB, Popov AA, Newell BS, Miller SM, Anderson OP, Seppelt K, Bolskar RD, Boltalina OV, Strauss SH (2007) Discovering and verifying elusive fullerene cage isomers: structures of C2-p11-(C74-D3h)(CF3)12 and C2-p11-(C78-D3h)(CF3)12. Angew Chem Int Ed 46:4111–4114Google Scholar
  49. 49.
    Rapta P, Popov AA, Yang S, Dunsch L (2008) Charged states of Sc3N@C68: an in situ spectroelectrochemical study of the radical cation and radical anion of a non-IPR fullerene. J Phys Chem A 112:5858–5865Google Scholar
  50. 50.
    Takata M, Nishibori E, Sakata M, Wang CR, Shinohara H (2003) Sc2 dimer in IPR-violated C66 fullerene: a covalent bonded metallofullerene. Chem Phys Lett 372:512–518Google Scholar
  51. 51.
    Shi ZQ, Wu X, Wang CR, Lu X, Shinohara H (2006) Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew Chem Int Ed 45:2107–2111Google Scholar
  52. 52.
    Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. Angew Chem Int Ed 46:1256–1259Google Scholar
  53. 53.
    Jimenez-Vazquez HA, Cross RJ, Saunders M, Poreda RJ (1994) Hot-atom incorporation of tritium atoms into fullerenes. Chem Phys Lett 229:111–114Google Scholar
  54. 54.
    Takata M, Umeda B, Nishibori E, Sakata M, Saito Z, Ohno M, Shinohara H (1995) Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377:46Google Scholar
  55. 55.
    Patchkovskii S, Thiel WJ (1996) How does helium get into buckminsterfullerene? Am Chem Soc 118:7164Google Scholar
  56. 56.
    Pietzak B, Waiblinger M, Murphy TA, Weidinger A, Hohne M, Dietel E, Hirsch A (1998) Properties of endohedral N@C60 carbon. Carbon 36:613–615Google Scholar
  57. 57.
    Jakes P, Weiden N, Eichel RA, Gembus A, Dinse KP, Meyer C, Harneit W, Weidinger AJ (2002) Electron paramagnetic resonance investigation of endohedral fullerenes N@C70 in a liquid crystal. Magn Res 156:303–308Google Scholar
  58. 58.
    Giblin DE, Gross ML, Saunders M, Jiménez-Vázquez H, Cross RJ (1997) Incorporation of helium into endohedral complexes of C60 and C70 containing noble-gas atoms: a tandem mass spectrometry study. J Am Chem Soc 119:9883–9890 doi: 10.1021/ja971104 lGoogle Scholar
  59. 59.
    Khong A, Jiménez-Vázquez HA, Saunders M, Cross RJ, Laskin J, Peres T, Lifshitz C, Strongin R, Smith AB (1998) An NMR study of He2 inside C70. J Am Chem Soc 120:6380–6383Google Scholar
  60. 60.
    Laskin J, Peres T, Lifshitz C, Saunders M, Cross RJ, Khong A (1998) An artificial molecule of Ne2 inside C70. Chem Phys Lett 285:7Google Scholar
  61. 61.
    Morinaka Y, Sato S, Wakamiya A, Nikawa H, Mizorogi N, Fumiyuki T, Murata M, Komatsu K, Furukawa K, Kato T, Nagase S, Akasaka T, Murata Y (2013) X-ray observation of a helium atom and placing a nitrogen atom inside He@ C60 and He@C70. Nat Commun 4 art:1554, doi:10.1038/ncomms2574Google Scholar
  62. 62.
    Dodziuk H (2002) Among synthetic, supramolecular and theoretical chemistry: stabilization of short-lived species in “molecular” or “supramolecular flasks”. Int J Molec Sci 3:814–821Google Scholar
  63. 63.
    Dodziuk H (2009) Strained hydrocarbons: beyond the van’t Hoff and Le Bel hypothesis. Wiley-VCH, Weinheim, pp 449–458Google Scholar
  64. 64.
    Dellinger A, Zhou ZG, Connor J, Madhankumar AB, Pamujula S, Sayes CM, Kepley CL (2013) Application of fullerenes in nanomedicine: an update. Nanomedicine 8:1191–1208Google Scholar
  65. 65.
    Nitta N, Seko A, Sonoda A, Ohta S, Tanaka T, Takahashi M, Murata K, Takemura S, Sakamoto T, Tabata Y (2008) Is the use of fullerene in photodynamic therapy effective for atherosclerosis? Cardiovasc Intervent Rad 31:359–366Google Scholar
  66. 66.
    Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2:639–649Google Scholar
  67. 67.
    Cagle DW, Kennel SJ, Mirzadeh S, Alford JM, Wilson LJ (1999) In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci U S A 96:5182–5187Google Scholar
  68. 68.
    Bolskar RD (2008) Medicinal applications of fullerenes. Nanomedicine 3:201–213Google Scholar
  69. 69.
    MacFarland DK, Walker KL, Lenk RP, Wilson SR, Kumar K, Kepley CL, Garbow JR (2008) Hydrochalarones: a novel endohedral metallofullerene platform for enhancing magnetic resonance imaging contrast. J Med Chem 51:3681–3683Google Scholar
  70. 70.
    Wilson LJ, Cagle DW, Thrash TP, Kennel SJ, Mirzadeh S, Alford JM, Ehrhardt GJ (1999) Metallofullerene drug design. Coord Chem Rev 192:199–207Google Scholar
  71. 71.
    Ibrahim M, Saleh NA, Elshemey WM, Elsayed AA (2010) Computational notes on fullerene based system as HIV-1 protease inhibitors. J Comput Theor Nanos 7:224–227Google Scholar
  72. 72.
    Kobayashi S, Mori S, Iida S, Ando H, Takenobu T, Taguchi Y, Fujiwara A, Taninaka A, Shinohara H, Yoshihiro IJ (2003) Conductivity and field effect transistor of La2@C80 metallofullerene. Am Chem Soc 125:8116–8117Google Scholar
  73. 73.
    Shibata K, Kubozono Y, Kanbara T, Hosokawa T, Fujiwara A, Ito. Y, Shinohara H (2004) Fabrication and characteristics of C84 fullerene field-effect transistor. Appl Phys Lett 84:2572–2574Google Scholar
  74. 74.
    Yasutake Y, Shi ZJ, Okazaki T, Shinohara H, Majima Y (2005) Single molecular orientation switching of an endohedral metallofullerene. Nano Lett 5:1057–1060Google Scholar
  75. 75.
    Ross RB, Cardona CM, Swain FB, Guldi DM, Sankaranarayanan SG, Van Keuren E, Holloway BC, Drees M (2009) Tuning conversion efficiency in metallo endohedral fullerene-based organic photovoltaic devices. Adv Funct Mat 19:2332–2337Google Scholar
  76. 76.
    Dao TT, Matsushima T, Murata H (2012) Highly stable fullerene memory transistors with an electron-trapping polymer. Org Electronics 2012 13:2709–2715Google Scholar
  77. 77.
    Benjamin SC, Ardavan AQ, Briggs GAD, Britz DA, Gunlycke D, Jefferson JH, Jones MAG, Leigh DF, Lovett BW, Khlobystov AN, Lyon S, Morton JJL, Porfyrakis K, Sambrook MR, Tyryshkin AM (2006) Towards a fullerene-based quantum computer. J Phys Condens Matter 18:S867–S883Google Scholar
  78. 78.
    Harneit W, Meyer C, Weidinger A, Suter D, Twamley J (2002) Quantum computer based on endohedral fullerenes. Phys. Stat. Solid. B 233:453Google Scholar
  79. 79.
    Twamley J (2003) Quantum-cellular-automata quantum computing with endohedral fullerenes. Phys Rev A 67 art no. 052318Google Scholar
  80. 80.
    Morinaka Y, Nobori M, Murata M, Wakamiya A, Sagawa T, Yoshikawa S, Murata Y (2013) Synthesis and photovoltaic properties of acceptor materials based on the dimerization of fullerene C60 for use in efficient polymer solar cells. Chem Commun 49:3670–3672Google Scholar
  81. 81.
    Li X, Zhang W, Wu Y, Mina C, Fang J (2013) Controllable threshold voltage of a pentacene field-effect transistor based on a double-dielectric structure. J Mater Chem1:12413–12416Google Scholar
  82. 82.
    Kurokawa Y, Ohno Y, Shimada T, Ishida M, Kishimoto S, Okazaki T, Shinohara H, Mizutani T, Jap J (2005) Fabrication and characterization of peapod field-effect transistors using peapods synthesized directly on Si substrate. Appl Phys Part 2 44:L1341–L1343Google Scholar
  83. 83.
    Prassides K, Dennis TJS, Christides C, Roduner E, Kroto HW, Taylor R, Walton DMR (1992) Mu@C70: monitoring the dynamics of fullerenes from inside the cage. J Phys Chem 96:10600Google Scholar
  84. 84.
    Komatsu K, Murata YJ (2004) Synthesis of fullerene derivatives with novel structures -liquid-phase versus solid-state reactions. Synth Org Chem Jpn 62:1138–1147Google Scholar
  85. 85.
    Hormann F, Hirsch A, Porfyrakis K, Briggs GAD (2011) Synthesis and magnetic properties of a nitrogen-containing fullerene dimer. Eur J Org Chem 117–121.Google Scholar
  86. 86.
    Li Y, Chen JY-C, Lei X, Lawler RG, Murata Y, Komatsu K, Turro NJ (2012) Comparison of nuclear spin relaxation of H2O@C60 and H2@C60 and their nitroxide derivatives. J Phys Chem Lett 3:1165–1168Google Scholar
  87. 87.
    Li Y, Lei X, Lawler RG, Murata Y, Komatsu K, Turro NJ (2011) Synthesis and characterization of bispyrrolidine derivatives of H2@C60: differentiation of isomers using 1H NMR spectroscopy of endohedral H2. Chem Commun 47:2282–2284Google Scholar
  88. 88.
    Cardona CM, Kitaygorodskiy A, Ortiz AL, Herranz MA, Echegoyen L (2005) The first fulleropyrrolidine derivative of Sc3N@C80: pronounced chemical shift differences of the geminal protons on the pyrrolidine ring. J Org Chem 70:5092–5097Google Scholar
  89. 89.
    Dodziuk H (2002) In Introduction to supramolecular chemistry; Kluwer: Dordrecht, pp 27-39, 275–284Google Scholar
  90. 90.
    Haussmann PC, Stoddart JF (2009) Synthesizing interlocked molecules dynamically. Chem Rec 9:136–154Google Scholar
  91. 91.
    Stoddart JF (2009) The chemistry of the mechanical bond. Chem Soc Rev 38:1802–1820Google Scholar
  92. 92.
    Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF (2002) Dynamic covalent chemistry. Angew Chem Int Ed Engl 41:898–952Google Scholar
  93. 93.
    Nishibori E, Narioka S, Takata M, Sakata M, Inoue T, Shinohara H Jap J (2006) A C2 molecule entrapped in the pentagonal-dodecahedral Y2 cage in Y2C2@C82(III). Appl Phys Part 1 46:881–891Google Scholar
  94. 94.
    Nishibori E, Narioka S, Takata M, Sakata M, Inoue T, Shinohara H (2006) A C2 molecule entrapped in the pentagonal-dodecahedral Y2 cage in Y2C2@C82(III). ChemPhysChem 7:345–348Google Scholar
  95. 95.
    Saunders M, Cross RJ, Shimshi R, Jimenez-Vazquez HA, Khong A (1996) Noble gas atoms inside fullerenes. Science 271:1693–1697Google Scholar
  96. 96.
    Komatsu K, Murata M, Murata Y (2005) In: Kuzmany H (ed) XIX international winterschool on electronic properties of novel materials. Kirchberg, TirolGoogle Scholar
  97. 97.
    Cai T, Xu L, Gibson HW, Dorn HC, Chancellor CJ, Olmstead MM, Balch AL (2007) Sc3N@C78: encapsulated cluster regio-control of adduct docking on an ellipsoidal metallofullerene sphere. J Am Chem Soc 129:10795–10800Google Scholar
  98. 98.
    Yang SF, Dunsch L (2006) Di- and tridysprosium endohedral metallofullerenes with cages from C94 to C100. Angew Chem Int Ed 45:1299–1302Google Scholar
  99. 99.
    Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) A stable non-classical metallofullerene family. Nature 408:427–428Google Scholar
  100. 100.
    Taylor R, Avent AG, Dennis TJ, Hare JP, Kroto HW, Holloway JH, Hope EG, Langley GJ (1992) No lubricants from fluorinated C60. Nature 355:27Google Scholar
  101. 101.
    Lopez-Gejo J, Marti AA, Ruzzi M, Jockush S, Komatsu K, Tanabe F, Murata Y, Turro NJ (2007) Can H2 inside C60 communicate with the outside world? J Am Chem Soc 129:14554Google Scholar
  102. 102.
    Varadwaj AVaradwaj PR (2012) Can a single molecule of water be completely isolated within the subnano-space inside the fullerene C60 cage? A quantum chemical prospective. Chem Eur J 18:15345–15360Google Scholar
  103. 103.
    Beduz C, Carravetta M, Chen J, Concistre M, Denning M, Frunzi M, Horsewill AJ, Johannessen O, Lawler R, Lei X, Levitt MH, Li Y, Mamone S, Murata Y, Nagel U, Nishida T, Ollivier J, Rols S, Room T, Sarkar R, Turro NJ, Yang Y (2012) Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proc Natl Acad Sci U S A 109:12894–12898Google Scholar
  104. 104.
    Concistre M, Mamone S, Denning M, Pileo G, Lei S, Li Y, Carravetta M, Turro NJ, Levitt MH (2013) Anisotropic nuclear spin interactions in H2O@C60 determined by solid-state NMR. Phil Trans R Soc A 371:20120102Google Scholar
  105. 105.
    Chen JY-C, Li Y, Frunzi M, Lei X, Murata Y, Lawler RG, Turro NJ (2013) Phil Trans R Soc A 371:20110628Google Scholar
  106. 106.
    Room T, Peedu L, Ge M, Hüvonen D, Nagel U, Ye S, Xu M, Bacic Z, Mamone S, Levitt MH, Carravetta M, Chen J, Lei X, Turro NJ, Murata Y, Komatsu K (2013) Recognition of hydrogen isotopomers by an open-cage fullerene. Phil Trans R Soc A 371:20110631Google Scholar
  107. 107.
    Horsewill AJ, Panesar KS, Rols S, Ollivier J, Johnson MR, Carravetta M, Mamone S, Levitt MH, Murata Y, Komatsu K, Chen JY-C, Johnson JA, Lei X, Turro NJ (2012) Inelastic neutron scattering investigations of the quantum molecular dynamics of a H2 molecule entrapped inside a fullerene cage. Phys Rev B 85:205440Google Scholar
  108. 108.
    Turro NJ, Mart AA, Chen JY-C, Jockusch S, Lawler RG, Ruzzi M, Sartori E, Chuang S-C, Komatsu K, Murata Y (2008) Demonstration of a chemical transformation inside a fullerene. The reversible conversion of the allotropes of H2@C60. J Am Chem Soc 130:10506Google Scholar
  109. 109.
    Frunzi M, Jockusch S, Chen JY-C, Calderon RMK, Lei X, Murata Y, Komatsu K, Guldi DM, Lawler RG, Turro NJ (2011) A photochemical on-off switch for tuning the equilibrium mixture of H2 nuclear spin isomers as a function of temperature. J Am Chem Soc 133:14232–14235Google Scholar
  110. 110.
    Yoon M, Yang SY, Wang E, Zhang ZY (2007) Charged fullerenes as high-capacity hydrogen storage media. Nano Lett 7:2578–2583Google Scholar
  111. 111.
    Yoon M, Yang SY, Zhang ZY (2009) Interaction between hydrogen molecules and metallofullerenes. J Chem Phys 131 art 64707Google Scholar
  112. 112.
    Arai M, Utsumi S, Kanamaru M, Urita K, Fujimori T, Yoshizawa N, Noguchi D, Nishiyama K, Hattori Y, Okino F, Ohba T, Tanaka H, Kanoh H, Kaneko K (2009) Enhanced hydrogen adsorptivity of single-wall carbon nanotube bundles by one-step C60-pillaring method. Nano Lett 9:3694–3698Google Scholar
  113. 113.
    Lan JH, Cao DP, Wang WC (2009) Li12Si60H60 fullerene composite: a promising hydrogen storage medium. ACS Nano 3:3294–3300Google Scholar
  114. 114.
    Liu W, Zhao YH, Li Y, Lavernia EJ, Jiang Q (2009) A reversible switch for hydrogen adsorption and desorption: electric fields. PhysChemChemPhys 11:9233–9240Google Scholar
  115. 115.
    Saunders M, Jimenez-Vazquez HA, Cross RJ, Poreda RJ (1993) Stable compounds of helium and neon: He@C60 and Ne@C60. Science 259:1428Google Scholar
  116. 116.
    Becker L, Poreda RJ, Bunch TE (2000) Fullerenes: an extraterrestrial carbon carrier phase for noble gases. Proc Natl Acad Sci U S A 97:2979–2983Google Scholar
  117. 117.
    Peng RF, Chu SJ, Huang YM, Yu HJ, Wang TS, Jin B, Fu YB, Wang CR (2009) Preparation of He@C60 and He2@C60 by an explosive method. J Mat Sci 19:3602–3605Google Scholar
  118. 118.
    Krapp A, Frenking G (2007) Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). Chem Eur J 13:8256–8270Google Scholar
  119. 119.
    Amusia MY, Chernysheva LV, Liverts EZ (1912) Generalized oscillator strength of endohedral molecules. Int J Quant Chem 112:3119–3130Google Scholar
  120. 120.
    Scott LT, Jackson EA, Zhang Q, Steinberg BD, Bancu M, Li BJ (2011) A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. Am Chem Soc 134:107–110Google Scholar
  121. 121.
    Mercado BQ, Chen N, Rodriguez-Fortea NA, Mackey MA, Stevenson S, Echegoyen L, Poblet JM, Olmstead MM, Balch AL (2011) The shape of the Sc2(μ2-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc22-S)@Cs(6)-C82 and Sc22-S)@C3v(8)-C82. J Am Chem Soc 133:6752–6760, 10.1021/ja200289wGoogle Scholar
  122. 122.
    Akasaka T, Nagase S (eds) (2002) Endofullerenes: a new family of carbon clusters. Kluwer, DordrechtGoogle Scholar
  123. 123.
    Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerenes cages. Acc Chem Res 43:92–102Google Scholar
  124. 124.
    Chaur MN, Melin F, Ortiz AL, Echegoyen L (2009) Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 48:7514–7538Google Scholar
  125. 125.
    Che Y, Yang H, Wang Z, Jin H, Liu Z, Lu C, Zuo T, Dorn HC, Beavers CM, Olmstead MM, Balch AL (2009) Isolation and structural characterization of two very large, and largely empty, endohedral fullerenes: Tm@C3v-C94 and Ca@C3v-C94. Inorg Chem 6004–6010Google Scholar
  126. 126.
    Jin H, Yang H, Yu M, Liu Z, Beavers CM, Olmstead MM, Balch AL, Dorn HC (2012) Single samarium atoms in large fullerene cages. Characterization of two isomers of Sm@C92 and four isomers of Sm@C94 with the X-ray crystallographic identification of Sm@C1(42)-C92, Sm@Cs(24)-C92, and Sm@C3v(134)-C94. J Am Chem Soc 134:10933–10941 doi: 10.1021/ja302859rGoogle Scholar
  127. 127.
    Mercado BQ, Jiang A, Yang H, Wang Z, Jin H, Liu Z, Olmstead MM, Balch AL (2009) Isolation and structural characterization of the molecular nanocapsule Sm2@D 3d(822)-C104. Angew Chem Int Ed 130:9114–9116. doi: 10.1002/anie.200904662Google Scholar
  128. 128.
    Beavers CM, Jin H, Yang H, Wang Z, Wang X, Ge H, Liu Z, Mercado BQ, Olmstead MM, Balch AL (2011) Very large, soluble endohedral fullerenes in the series La2C90 to La2C138: isolation and crystallographic characterization of La2@D 5(450)-C100. J Am Chem Soc 133:15338–15341. doi: 10.1021/ja207090eGoogle Scholar
  129. 129.
    Xu W, Feng L, Calvaresi M, Liu J, Liu Y, Niu B, Shi Z, Lian Y Zerbetto F (2013) An experimentally observed trimetallofullerene Sm3@I h-C80: encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135:4187–4190Google Scholar
  130. 130.
    Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) A scandium carbide endohedral metallofullerene Sc2C2@C84. Angew Chem Int Ed 40:397–399Google Scholar
  131. 131.
    Wakahara T, Sakuraba A, Iiduka Y, Okamura M, Tsuchiya T, Maeda Y, Akasaka T, Okubo S, Kato T, Kobayashi K, Nagase S, Kadish KM (2004) Chem Phys Lett 398:553–556Google Scholar
  132. 132.
    Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K (2005) Sc3@C82 structural determination of metallofullerene Sc3@C82 revisited: a surprising finding. J Am Chem Soc 127:12500–12505Google Scholar
  133. 133.
    Yang H, Lu CX, Liu ZY, Che YL, Olmstead MM, Balch AL (2008) Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J Am Chem Soc 130:17296–17300Google Scholar
  134. 134.
    Chaur MN, Anthans AJ, Echegoyen L (2008) Lantanide nitrides in C84, C88, C92 and C96. Tetrahedron 64:11387–11393Google Scholar
  135. 135.
    Chaur MN, Melin F, Elliott B, Kumbhar A, Athans AJ, Echegoyen L (2008) New M3N@C2n endohedral metallofullerene families (M = Nd, Pr, Ce; n=40-53): Expanding the preferential templating of the C88 cage and approaching the C96 cage. Chem Eur J 14:4594–4599Google Scholar
  136. 136.
    Chaur MN, Valencia R, Rodríguez-Fortea A, Poblet JM, Echegoyen L (2008) Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M3N6+@C6− 2n model. Angew Chem Int Ed 48:1425–1428Google Scholar
  137. 137.
    Campanera JM, Bo C, Olmstead MM, Balch AL, Poblet JM (2002) Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 as determined by density functional calculations and reexamination of the crystal structure of {Sc3N@C78}center dot Co(OEP)center dot 1.5(C6H6)center dot 0.3(CHCl3). J Phys Chem A 106:12356–12364Google Scholar
  138. 138.
    Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57Google Scholar
  139. 139.
    Tarabek J, Yang S, Dunsch L (2009) Redox properties of mixed lutetium/yttrium nitride custerfullerenes: endohedral LuxY3-xN@C80(I) (x=0-3) compounds.ChemPhysChem 10:1037–1043Google Scholar
  140. 140.
    Wang CR, Zuo TM, Olmstead MM, Duchamp JC, Glass TE, Cromer F, Balch AL, Dorn HC (2006) Preparation and structure of CeSc2N@C80: An icosahedral carbon cage enclosing an acentric CeSc2N unit with buried f electron spin. J Am Chem Soc 128, art. no. JA061434IGoogle Scholar
  141. 141.
    Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) A distorted tetrahedral metal oxide cluster inside an icosaedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(m3-O)2@I h-C80. J Am Chem Soc 130:11844–11845Google Scholar
  142. 142.
    Beavers CM, Chaur MN, Olmstead MM, Echegoyen L, Balch AL (2009) Non-IPR C78 large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131:11519–11524Google Scholar
  143. 143.
    Gimenez-Lopez MD, Gardener JA, Shaw AQ, Iwasiewicz-Wabnig A, Porfyrakis K, Balmer C, Dantelle G, Hadjipanayi M, Crossley A, Champness NR, Castell MR, Briggs GAD, Khlobystov AN (2010) Endohedral metallofullerenes in self-assembled monolayers. Phys Chem Chem Phys 12:123–131Google Scholar
  144. 144.
    Wang T, Feng L, Wu J, Xu W, Xiang J, Tan K, Ma Y, Zheng J, Jiang L, Lu X, Shu C, Wang C (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-I h. J Am Chem Soc 132:16362–16364Google Scholar
  145. 145.
    Wu J, Wang T, Ma Y, Jiang L, Shu C, Wang C (2011) Synthesis, Isolation, Characterization, and Theoretical Studies of Sc3NC@C78-C 2. J Phys Chem C 115:23755–23759. doi:10.1021/jp2081929Google Scholar
  146. 146.
    Mercado BQ, Olmstead MM, Beavers CM, Easterling ML, Stevenson S, Mackey MA, Coumbe CE, Phillips JD, Phillips JP, Poblet JM, Balch AL (2010) A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc4(m3-O)2@I h-C80. Chem Commun 279–281Google Scholar
  147. 147.
    Chen N, Chaur MN, Moore C, Pinzon JR, Valencia R, Fortea AR, Poblet JM, Echegoyen L (2010) Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40 -50) by the introduction of SO2. Chem Commun 46:4818–4820Google Scholar
  148. 148.
    Krause M, Ziegs. F, Popov AA, Dunsch L (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8:537–540Google Scholar
  149. 149.
    Fu W, Zhang J, Fuhrer T, Champion H, Furukawa K, Kato T, Mahaney JE, Burke BG, Williams KA, Walker K, Dixon C, Ge JC, Shu CY, Harich K, Dorn HC (2011) Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc 133:9741–9750. doi:10.1021/ja202011uGoogle Scholar
  150. 150.
    Zuo TM, Xu LS, Beavers CM, Olmstead MM, Fu WJ, Crawford D, Balch AL, Dorn HC (2008) M2@C79N (M = Y, Tb): Isolation and characterization of stable endohedral metallofullerenes exhibiting M-M bonding interactions inside aza[80]fullerene cages. J Am Chem Soc 130:12992–12997Google Scholar
  151. 151.
    Rubin Y, Jarrosson T, Wang W, Bartberger MD, Houk KN, Schick G, Saunders M, Cross RJ (2001) First opened fullerene with H2 and He. Angew Chem Int Ed 40:1543–1546Google Scholar
  152. 152.
    Murata Y, Chuang SC, Tanabe F, Murata M, Komatsu K (2013) Recognition of hydrogen isotopomers by an open-cage fullerene. Philos Trans A Math Phys Eng Sci. doi:10.1098/rsta.2011.0629Google Scholar
  153. 153.
    Xiao Z, Yao JY, Yang DZ, Wang FD, Huang SH, Gan LB, Jia ZS, Jiang ZP, Yang XB, Zheng B, Yuan G, Zhang SW, Wang ZM (2007) Synthesis of [59]fullerenones through peroxide-mediated stepwise cleavage of fullerene skeleton bonds and X-ray structures of their water-encapsulated open-cage complexes. J Am Chem Soc 129:16149–16162Google Scholar
  154. 154.
    Iwamatsu S-I, Uozaki T, Kobayashi K, Re S, Nagase S, Murata S (2004) Bowl-shaped fullerene encapsulates a water into the cage. J Am Chem Soc 126:2668–2669Google Scholar
  155. 155.
    Iwamatsu S, Murata S (2004) H2O@open-cage fullerene C60: control of encapsulation property and the first mass spectroscopic identification. Tetrah Lett 45:6391–6394Google Scholar
  156. 156.
    Stanisky CM, Cross RJ, Saunders M (2009) Putting atoms and molecules into chemically opened fullerenes. J Am Chem Soc 131:3392–3395Google Scholar
  157. 157.
    Iwamatsu SI, Stanisky CM, Cross RJ, Saunders M, Mizorogi N, Nagase S, Murata S (2006) CO in opened fullerene. Angew Chem Int Ed 45:5337–5340Google Scholar
  158. 158.
    Whitener Jr KE, Frunzi M, Iwamatsu S-I, Murata S, Cross RJ, Saunders M (2008) Ammonia in an open-cage [60]fullerene. J Am Chem Soc 13996–13999Google Scholar
  159. 159.
    Whitener Jr KE, Cross RJ, Saunders M, Iwamatsu S-I, Murata S, Mizorogi N, Nagase S (2009) Methane in an open-cage [60]fullerene. J Am Chem Soc 131:6338–6339Google Scholar
  160. 160.
    Jeziorski B, Moszynski R, Szalewicz K (1994) SAPT perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930Google Scholar
  161. 161.
    Szalewicz K, Patkowski K, Jeziorski B (2005) Intermolecular interactions via perturbation theory: from diatoms to biomolecules. Structure and Bonding 116:43–117Google Scholar
  162. 162.
    Jansen G (2013) Symmetry-adapted perturbation theory based on density functional theory for noncovalent interactions. Wiley Interdisc Rev: Comp Mol Sci. doi: 10.1002/wcms.1164Google Scholar
  163. 163.
    Szalewicz K, Jeziorski B (2007) Symmetry-adapted perturbation theory of intermolecular interactions. In: Schreiner S (ed) Molecular interactions —from van derWaals to strongly Bound complexes. Wiley, Chichester, pp 3–43Google Scholar
  164. 164.
    Ugarte D (1992) Curling and closure of graphitic networks under electron beam irradiation. Nature 359:707Google Scholar
  165. 165.
    Terrones H, Terrones M (1997) (Tetrahedral C264@C660@C1248) The transformation of polyhedral particles into graphitic onions. J Phys Chem Solids 38:1789–1796Google Scholar
  166. 166.
    Dodziuk H, Dolgonos G, Lukin O (2000) Ease of formation of nested fullerenes. Chem Phys Lett 329:351–356Google Scholar
  167. 167.
    Zimmermann U, Malinowski N, Näher U, Frank S, Martin TP (1994) Multilayer metal coverage of fullerene molecules. Phys Rev Lett 72:3542–3545Google Scholar
  168. 168.
    Rafique MMA, Iqbal JJ (2011) Production of carbon nanotubes by different routes—-a review. Encaps Adsorption Scie 1:29–34Google Scholar
  169. 169.
    Bystrzejewski M, Rümmeli MH, Lange H, Huczko A, Baranowski P, Gemming T, Pichler T (2008) Single-walled carbon nanotubes synthesis: a direct comparison of laser ablation and carbon arc routes. J Nanosci Nanotechnol 8:6178–6186Google Scholar
  170. 170.
    Sternfeld T, Hoffman RE, Saunders M, Cross RJ, Syamala MS, Rabinovitz M (2002) Two helium atoms inside fullerenes: probing the internal magnetic field in C60 6- and C70 6. J Am Chem Soc 124:8786–8787Google Scholar
  171. 171.
    Dietel E, Hirsch A, Pietzak B, Waiblinger R, Lips K, Weidinger A, Gruss A, Dinse KP (1999) Atomic nitrogen encapsulated in fullerenes: effects of cage variations. J Am Chem Soc 121:2432–2437Google Scholar
  172. 172.
    Naydenov B, Spudat C, Harneit W, Süss HI, Hulliger J, Nuss J, Jansen M (2006) Ordered inclusion of endohedral fullerenes N@C60 and P@C60 in a crystalline matrix. Chem Phys Lett 424:327–332Google Scholar
  173. 173.
    Mauser H, Hommes NJRV, Clark T, Hirsch A, Pietzak B, Weidinger A, Dunsch L (1997) Stabilization of atomic nitrogen inside C60. Angew Chem Int Ed 36:2835–2838Google Scholar
  174. 174.
    Cao BP, Peres T, Lifshitz C, Cross RJ, Saunders M (2006) Kinetic energy release of C70 + and its endohedral cation N@C70 +: Activation energy for N extrusion. Chem Eur J 12:2113–2221Google Scholar
  175. 175.
    Grose JE, Tam ES, Timm C, Scheloske M, Ulgut B, Parks JJ, Abruna HD, Harneit W, Ralph DC (2008) Tunnelling spectra of individual magnetic endofullerene molecules. Nature Mat 7:884–889Google Scholar
  176. 176.
    Scheloske M, Naydenov B, Meyer C, Harneit W (2006) Synthesis and functionalization of fullerenes encapsulating atomic phosphorus. Isr J Chem 46:407–412Google Scholar
  177. 177.
    Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon, OxfordGoogle Scholar
  178. 178.
    Koshland DE Jr (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed 33:2375–2378Google Scholar
  179. 179.
    Akasaka T, Nagase S, Kobayashi K, Waelchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem Int Ed Engl 36:1643Google Scholar
  180. 180.
    Xu J, Tsuchiya T, Hao C, Wakahara T, Mi W, Gu Z, Akasaka T (2006) Dynamics structure determination of a missing-caged metallofullerene: Yb@C74 (II) and the dynamic motion of the encaged ytterbium ion. Chem Phys Lett 419:44–47Google Scholar
  181. 181.
    Delaney P, Greer JC (2004) C60 as a Faraday cage. Appl Phys Lett 84:431–433Google Scholar
  182. 182.
    Lips K, Waiblinger M, Pietzak B, Weidinger A (2000) Atomic nitrogen encapsulated in fullerenes: proof of an ideal chemical Faraday cage. Mol Mater 13:217–224Google Scholar
  183. 183.
    Zope RR (2008) Electronic structure and static dipole polarizability of C60@C240. J Phys B 41 art no. 085101Google Scholar
  184. 184.
    Sauvage J-P, Dietrich-Buchecker CO (1999) Molecular catenanes, rotaxanes and knots. A journey through the world of molecular topology. Wiley-VCH, Weinheim, pp 107–142Google Scholar
  185. 185.
    Watanabe N, Furusho Y, Kihara N, Takata T, Kinbara K, Saigo K (2001) Chemical modification of amide-based catenanes and rotaxanes II. Synthesis of tertiary amine [2]catenanes and [2] rotaxanes via N-methylation followed by borane reduction of secondary amide. Bull Chem Soc Japan 74:149–155Google Scholar
  186. 186.
    Vignon SA, Stoddart JF (2005) Exploring dynamics and stereochemistry in mechanically-interlocked compounds. Collect Czech Chem Commun 70:1493–1576Google Scholar
  187. 187.
    Peera A, Saini RK, Alemany LB, Billups WE, Saunders M, Khong A, Syamala MS, Cross RJ (2003) Formation, isolation, and spectroscopic properties of some isomers of C60H38, C60H40, C60H42, and C60H44 —Analysis of the effect of the different shapes of various helium-containing hydrogenated fullerenes on their 3He chemical shifts. Eur J Org Chem 21:4140–4145Google Scholar
  188. 188.
    Rosenthal J, Schuster DI, Cross RJ, Khong A (2006) 3He NMR as a sensitive probe of fullerene reactivity: [2+2] Photocycloaddition of 3-methyl-2-cyclohexenone to C70. J Org Chem 71:1191–1199Google Scholar
  189. 189.
    Sternfeld T, Saunders M, Cross RJ, Rabinovitz M (2003) The inside story of fullerene anions: a3He NMR aromaticity probe. Angew Chem Int Ed 42:3136–3139Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations