Skip to main content

The Three Dimensional Visualization Growth of Bone Tissue in Microstructure of Surface Analysis Using Drishti Open-Source Software

  • Conference paper
Information Technologies in Biomedicine, Volume 3

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 283))

  • 1210 Accesses

Abstract

Nowadays, computed tomography and three dimensional visualization provide anatomic images structures with an impressive richness of anatomical details. They are ubiquitous used in various fields of medical knowledge. In addition, X-ray microtomography (XMT) next to standard quantitative computed tomography (QCT) provide data with much higher spatial resolution. Use them for three dimensional visualization of the surface of animal tissue for macroscopic and microscopic analysis of the structure of tissue is a tool of immense possibilities that successfully is widely use in structural studies of hard tissues. The research article presents the disadvantages and advantages of the creation and use of three dimensional visualization of images using Drishti open-source software on the example of growth of sheep bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binkowski, M., et al.: Differences in trabecular bone mechanical strength measured by the x-ray microcomputed tomography and compressive test. Journal of Medical Informatics & Technologies 15, 163–168 (2010)

    Google Scholar 

  2. Binkowski, M., et al.: Quantitative Measurement of the Bone Density by X-Ray Micro Computed Tomography. In: IFMBE Proceedings, vol. 31, pp. 856–859 (2010)

    Google Scholar 

  3. Błażejowski, B., et al.: X-ray Microtomography (XMT) of Fossil Brachiopod Shell Interiors for Taxonomy. Acta Palaeontologica Polonica 56(2), 439–440 (2011)

    Article  Google Scholar 

  4. Elliott, J.C., Dover, S.D.: X-ray microtomography. Journal of Microscopy 126(2), 211–213 (1982)

    Article  Google Scholar 

  5. Feldkamp, L.A., et al.: The direct examination of three-dimensional bone architecture in vitro by computed tomography. Journal of Bone and Mineral Research 4(1), 3–11 (1989)

    Article  Google Scholar 

  6. Hofer, M., et al.: CT Teaching Manual: A Systematic Approach to CT Reading. Journal of Nuclear Medicine 48(3), 494 (2007)

    MathSciNet  Google Scholar 

  7. Van de Kamp, T., et al.: A biological screw in a beetle’s leg. Science 333(6038), 52 (2011)

    Article  Google Scholar 

  8. Kohler, T., et al.: Compartmental bone morphometry in the mouse femur: reproducibility and resolution dependence of microtomographic measurements. Calcified Tissue International 77(5), 281–290 (2005)

    Article  Google Scholar 

  9. Langford, J.R., et al.: Pelvic Fractures: Part 2. Contemporary Indications and Techniques for Definitive Surgical Management. Journal of the American Academy of Orthopaedic Surgeons 21(8), 458–468 (2013)

    Article  Google Scholar 

  10. Limaye, A.: Drishti: a volume exploration and presentation tool. In: SPIE Developments in X-Ray Tomography VIII, vol. 8506, p. 85060X (2012)

    Google Scholar 

  11. Marinozzi, F., et al.: Technique for bone volume measurement from human femur head samples by classification of micro-CT image histograms. Ann. Ist. Super Sanitr. 49(3), 300–305 (2013)

    Google Scholar 

  12. Mizutani, R., Suzuki, Y.: X-ray microtomography in biology. Micron 43(2-3), 104–115 (2012)

    Article  Google Scholar 

  13. Müller, R., Rüegsegger, P.: Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Studies in Health Technology and Informatics 40, 61–79 (1997)

    Google Scholar 

  14. Nowaczewska, W., et al.: The tooth of a Neanderthal child from Stajnia Cave, Poland. Journal of Human Evolution 64(3), 225–231 (2013)

    Article  Google Scholar 

  15. Owen, S.: Visualization in Medicine, http://www.siggraph.org/education/HyperVis-/applicat/medical/intro.htm

  16. Ribi, W., et al.: Imaging honey bee brain anatomy with micro-X-ray-computed tomography. Journal of Neuroscience Methods 171(1), 93–97 (2008)

    Article  Google Scholar 

  17. Robb, R.: 3-Dimensional Visualization in Medicine and Biology. In: Handbook of Medical Imaging: Processing and Analysis, pp. 685–712. Academic Press, San Diego (2000)

    Chapter  Google Scholar 

  18. Sheth, N.P., et al.: Femoral Bone Loss in Revision Total Hip Arthroplasty: Evaluation and Management. Journal of the American Academy of Orthopaedic Surgeons 21(10), 601–612 (2013)

    Article  Google Scholar 

  19. Short, K.M., et al.: Tomographic quantification of branching morphogenesis and renal development. Kidney International 77(12), 1132–1139 (2010)

    Article  Google Scholar 

  20. Sinha, P.K., et al.: Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography. Electrochemical and Solid-State Letters 9(7), A344 (2006)

    Google Scholar 

  21. Sulikowska-Drozd, A., et al.: The evolution of shell apertural barriers in viviparous land snails (Gastropoda, Pulmonata, Clausiliidae). Canadian Journal of Zoology (2014)

    Google Scholar 

  22. Weiler, A., et al.: Tendon Healing in a Bone Tunnel. Part II: Histologic Analysis After Biodegradable Interference Fit Fixation in a Model of Anterior Cruciate Ligament Reconstruction in Sheep. Arthroscopy: The Journal of Arthroscopic and Related Surgery 18(2), 124–135 (2002)

    Article  Google Scholar 

  23. Amira, http://www.vsg3d.com/amira/overview

  24. Avizo® Fire, http://www.vsg3d.com/avizo/fire

  25. Mimics, http://biomedical.materialise.com/mimics

  26. OpenGL, http://www.opengl.org

  27. Qt, http://qt.nokia.com

  28. VG Studio, http://www.volumegraphics.com/en/products/vgstudio-max.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Stolarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Stolarz, M., Ficek, K., Binkowski, M., Wójcicka, A., Wróbel, Z. (2014). The Three Dimensional Visualization Growth of Bone Tissue in Microstructure of Surface Analysis Using Drishti Open-Source Software. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics