Skip to main content

Prokaryotic DNA Signal Downsampling for Fast Whole Genome Comparison

  • Conference paper
Information Technologies in Biomedicine, Volume 3

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 283))

Abstract

Classification of prokaryotes is mainly based on molecular data, since next-generation sequencing platforms provide fast and effective way to capture prokaryotes’ characteristics. However, two different bacterial strains of the same genus can differ in the specific parts of their genomes due to copious amounts of repetitive and transposable parts. Thus, finding an ideal segment of genome for comparison is difficult. Conventional character-based methods rely on multiple sequence alignment, rendering them extremely computationally demanding. Only small parts of genomes can be compared in reasonable time. In this paper, we present a novel algorithm based on the conversion of the whole genome sequences to cumulative phase signals. Dyadic wavelet transform (DWT) is used for lossy compression of phase signals by eliminating redundant frequency bands. Signal classification is then performed as cluster analysis using Euclidean metrics where sequence alignment is replaced by dynamic time warping (DTW).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mayr, E., Bock, W.J.: Classifications and other ordering systems. Zool. Syst. Evol. Research 40, 169–194 (2002)

    Article  Google Scholar 

  2. Cohen, A., Daubechies, I., Vial, P.: Wavelets on the Interval and Fast Wavelet Transforms. Applied and Computational Harmonic Analysis 1(1), 54–81 (1992)

    Article  MathSciNet  Google Scholar 

  3. Skutkova, H., Vitek, M., Babula, P., Kizek, R., Provaznik, I.: Classification of genomic signals using dynamic time warping. BMC Bioinformatics 14, S1 (2013)

    Google Scholar 

  4. Bittner, L., Halary, S., Payri, C., Cruaud, C., de Reviers, B., Lopez, P., Bapteste, E.: Some considerations for analyzing biodiversity using integrative metagenomics and gene networks. Biology Direct 5 (2010)

    Google Scholar 

  5. Chapple, D.G., Ritchie, P.A.: A Retrospective Approach to Testing the DNA Barcoding Method. PloS One 8(11) (2013)

    Google Scholar 

  6. Anastassiou, D.: Genomic Signal Processing. IEEE Signal Processing Magazine 18(4), 8–20 (2001)

    Article  Google Scholar 

  7. Cristea, P.D.: Conversion of nucleotides sequences into genomic signals. Journal of Cellular and Molecular Medicine 6(2), 279–303 (2002)

    Article  Google Scholar 

  8. Yau, S.S.T., Wang, J.S., Niknejad, A., Lu, C., Jin, N., Ho, Y.K.: DNA sequence representation without degeneracy. Nucleic Acids Research 31(12), 3078–3080 (2003)

    Article  Google Scholar 

  9. Cristea, P.D.: Large scale features in DNA genomic signals. Signal Processing 83, 871–888 (2003)

    Article  MATH  Google Scholar 

  10. Hao, W., Golding, G.B.: Patterns of Bacterial Gene Movement. Mol. Biol. Evol. 21(7), 1294–1307 (2004)

    Article  Google Scholar 

  11. Sorimachi, K.: A Proposed Solution to the Historic Puzzle of Chargaff’s Second Parity Rule. The Open Genomics Journal 2(1), 12–14 (2009)

    Article  Google Scholar 

  12. Jan, J.: Digital signal filtering, analysis and restoration. Institution of Electrical Engineers (2000)

    Google Scholar 

  13. Daubechies, I.: Ten lectures on wavelets. CBMS-NSF conference series in applied mathematics. SIAM Ed (1992)

    Google Scholar 

  14. Berndt, D., Clifford, J.:Using dynamic time warping to find patterns in time series, New York, vol. 398, pp. 359–370 (1994)

    Google Scholar 

  15. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    Article  Google Scholar 

  16. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)

    Article  Google Scholar 

  17. Sokal, R., Michener, C.: A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38, 1409–1438 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Sedlar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sedlar, K., Skutkova, H., Vitek, M., Provaznik, I. (2014). Prokaryotic DNA Signal Downsampling for Fast Whole Genome Comparison. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics