Skip to main content

A Machine Learning Approach to Identify Prostate Cancer Areas in Complex Histological Images

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 283))

Abstract

Separating benign glands, and cancer areas from stroma is one of the vital steps towards automated grading of prostate cancer in digital images of H&E preparations. In this work we present a novel tool that utilizes a supervised classification of histograms of staining components in hematoxylin and eosin images to delineate areas of benign and cancer glands. Using high resolution images of whole slide prostatectomies we compared several image classification schemes which included intensity histograms, histograms of oriented gradients, and their concatenations to the manual annotations of tissues by a pathologist, and showed that joint intensity histograms of hematoxylin and eosin components performed with the highest accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fine, S.W., Amin, M.B., Berney, D.M., et al.: A contemporary update on pathology reporting for prostate cancer: biopsy and radical prostatectomy specimens. Eur. Urol. 62(1), 20–39 (2012)

    Article  Google Scholar 

  2. Brimo, F., Montironi, R., Egevad, L., et al.: Contemporary Grading for Prostate Cancer: Implications for Patient Care. Eur. Urol. 63(5), 892–901 (2013)

    Article  Google Scholar 

  3. Dole, S., Feldman, M.D., Shih, N., Tomaszewski, J., Madabhushi, A.: Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer. BMC Bioinformatics, 13–282 (2012)

    Google Scholar 

  4. Gorelick, L., Veksler, O., Gaed, M., et al.: Prostate Histopathology: Learning Tissue Component Histograms for Cancer Detection and Classification. IEEE Transactions on Medical Imaging 32(10), 1804–1818 (2013)

    Article  Google Scholar 

  5. Loeffler, M., Greulich, L., Scheibe, P., Kahl, P., Shaikhibrahim, Z., Braumann, U.D., Kuska, J.P., Wernert, N.: Classifying prostate cancer malignancy by quantitative histomorphometry. J. Urol. 187(5), 1867–1875 (2012)

    Article  Google Scholar 

  6. Doyle, S., Hwang, M., Shah, K., Madabhushi, A., Feldman, M., Tomaszewski, J.: Automated grading of prostate cancer using architectural and textural image features. In: 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1284–1287 (2007)

    Google Scholar 

  7. Peng, Y., Jiang, Y., Eisengart, L., Healy, M.A., Straus, F.H., Yang, X.J.: Computer-aided identification of prostatic adenocarcinoma: Segmentation of glandular structures. J. Pathol. Inform. 2, 33 (2011)

    Article  Google Scholar 

  8. Nguyen, K., Sarkar, A., Jain, A.K.: Structure & Context in Prostatic Gland Segmentation and Classification. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 115–123. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Tabesh, A., Teverovskiy, M., Pang, H.Y., Kumar, V.P., Verbel, D., Kotsianti, A., Saidi, O.: Multifeature prostate cancer diagnosis and Gleason grading of histological images. IEEE Trans. Med. Imaging 26(10), 1366–1378 (2007)

    Article  Google Scholar 

  10. Goode, A., Gilbert, B., Harkes, J., Jukic, D., Satyanarayanan, M.: OpenSlide: A vendor-neutral software foundation for digital pathology. J. Pathol. Inform. 4, 27 (2013)

    Article  Google Scholar 

  11. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Analytical & Quantitative Cytology and Histology 23(4), 291–299 (2001)

    Google Scholar 

  12. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Int. Conference on Computer Vision & Pattern Recognition, vol. 2, pp. 886–893 (2005)

    Google Scholar 

  13. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66(336), 846–850 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Salman, S. et al. (2014). A Machine Learning Approach to Identify Prostate Cancer Areas in Complex Histological Images. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics