Skip to main content

Fractal Texture Analysis in the Irregular Region of Interest of the Healing Process Using Guided Bone Regeneration

  • Conference paper
Information Technologies in Biomedicine, Volume 3

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 283))

Abstract

A fractal texture analysis technique was introduced for assessment of the healing process using Guided Bone Regeneration (GBR) after bone loss in resected and cystic areas. Fractal dimension may be used for the characterization of surface topography of medical images. In this paper we attempted to analyse fractal surface in the irregular regions of interest (irregular ROI-s) using two methods: Chen’s method and variogram. In our study a significant change for the values of fractal dimension was found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, Y.K., Yun, P.Y., Kim, S.G., Lim, S.C.: Analysis of the healing process in sinus bone grafting using various grafting materials. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 107(2), 204–211 (2009)

    Article  Google Scholar 

  2. Ribeiro, F.V., Suaid, F.F., Ruiz, K.G.S., Rodrigues, T.L., Carvalho, M.D., Nociti, F.H., Sallum, E.A., Casati, M.Z.: Effect of autologous bone marrow-derived cells associated with guided bone regeneration or not in the treatment of peri-implant defects. Int. J. Oral Maxillofac. Surg. 41(1), 121–127 (2012)

    Article  Google Scholar 

  3. Baldini, N., De Sanctis, M., Ferrari, M.: Deproteinized bovine bone in periodontal and implant surgery. Dent. Mater. 27(1), 61–70 (2011)

    Article  Google Scholar 

  4. Kim, S.G., Kim, H.K., Lim, S.C.: Combined implantation of particulate dentine, plaster of Paris, and a bone xenograft (Bio-Oss) for bone regeneration in rats. J. Craniomaxillofac. Surg. 29(5), 282–288 (2001)

    Article  Google Scholar 

  5. Mokbel, N., Naaman, N., Nohra, J., Badawi, N.: Healing patterns of critical size bony defects in rats after grafting with bone substitutes soaked in recombinant human bone morphogenetic protein-2: histological and histometric evaluation. Br. J. Oral Maxillofac. Surg. 51(6), 545–549 (2013)

    Article  Google Scholar 

  6. Chen, Y.Q., Nixon, M.S., Thomas, D.W.: Statistical geometrical features for texture classification. Pattern Recogn 28(4), 537–552 (1995)

    Article  Google Scholar 

  7. Xu, C.L., Chen, Y.Q.: Classifying image texture with statistical landscape features. Pattern Anal. Appl. 8(4), 321–331 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chandraratne, M.R., Kulasiri, D., Samarasinghe, S.: Classification of lamb carcass using machine vision: Comparison of statistical and neural network analyses. J. Food Eng. 82(1), 26–34 (2007)

    Article  Google Scholar 

  9. Vilnrotter, F.M., Nevatia, R., Price, K.E.: Structural Analysis of Natural Textures. IEEE T. Pattern Anal. 8(1), 76–89 (1986)

    Article  Google Scholar 

  10. Keller, J.M., Chen, S., Crownover, R.M.: Texture description and segmentation through fractal geometry. Comput. Vision Graph 45(2), 150–166 (1989)

    Article  Google Scholar 

  11. Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recogn. 35(3), 735–747 (2002)

    Article  MATH  Google Scholar 

  12. Ghali, A., Daemi, M.F., Mansour, M.: Image structural information assessment. Pattern Recogn. Lett. 19(5-6), 447–453 (1998)

    Article  MATH  Google Scholar 

  13. Azencott, R., Wang, J.P., Younes, L.: Texture classification using windowed Fourier filters. IEEE T. Pattern. Anal. 19(2), 148–153 (1997)

    Article  Google Scholar 

  14. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  15. Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE T. Pattern Anal. 21(4), 291–310 (2002)

    Article  Google Scholar 

  16. Bresch, M.: Optimizing filter banks for supervised texture recognition. Pattern Recogn. 35(4), 783–790 (2002)

    Article  MATH  Google Scholar 

  17. Mandelbrot, B.B.: The fractal geometryof nature. Freeman, New York

    Google Scholar 

  18. Nelson, T.R.: Fractals: physiologic complexity, scaling, and opportunities for imaging. Invest. Radiol. 25, 1140–1148 (1990)

    Google Scholar 

  19. Besicovitch, A.: On the fundamental properties of linearity measurable plane setsof points. Math. Ann. 98, 422–464 (1928)

    Article  MathSciNet  Google Scholar 

  20. Hausdorff, F.: Dimension und äußeres Maß. Math. Ann. 79, 157–179 (1918)

    Article  MATH  MathSciNet  Google Scholar 

  21. Caldwell, C.B., Moran, E.L., Bogoch, E.R.: Fractal dimension as a measure of altered trabecular bone in experimental inflamatory arthritis. J. Bone Miner. Res. 13(6), 978–985 (1998)

    Article  Google Scholar 

  22. Clarke, K.C.: Computation of the fractal dimension of topographic surfaces using triangular prism surface area method. Comp. Geosci. 12, 713–722 (1986)

    Article  Google Scholar 

  23. Peleg, S., Naor, J., Hartley, R., Avnir, D.: Multiple resolution texture analysis and classification. IEEE Trans. Pattern Anal. Mach. Intell. 6(4), 518–523 (1984)

    Article  Google Scholar 

  24. Maragos, P., Sun, F.K.: Measuring the fractal dimension of signals: morphological covers and iterative optimization. IEEE Trans. Signal Process. 41(1), 108–121 (1993)

    Article  MATH  Google Scholar 

  25. Voss, R.: Random Fractals: Characterization and measurement. In: Pynn, R., Skjeltorp, A. (eds.) Scaling Phenomena in Disordered Systems, pp. 1–11. Plenum, New York (1986)

    Google Scholar 

  26. Chen, S.S., Keller, J.M., Crownover, R.M.: On the calculations of fractal features from images. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1087–1090 (1993)

    Article  Google Scholar 

  27. Bianchi, F., Bonetto, R.: FERImage: an interactive program for fractal dimension, d(per) and d(min) calculations. Scanning 23(3), 193–197 (2001)

    Article  Google Scholar 

  28. Dennis, T.J., Dessipris, N.G.: Fractal modelling in image texture analysis. IEEE Proc. F Radar and Signal Process. 136, 227–235 (1989)

    Article  Google Scholar 

  29. Super, B.J., Bovik, A.C.: Localized measurement of image fractal dimension using gabor filters. J. Visual Commun. Image Represent. 2, 114–128 (1991)

    Article  Google Scholar 

  30. Losa, G.A., Merlini, D., Nonnemacher, T., Weibel, E.R. (eds.): Fractals in Biology and Medicine, vol. II. Birkhäuser Verlag, Basel (1998)

    Google Scholar 

  31. Losa, G.A., Merlini, D., Nonnemacher, T., Weibel, E.R. (eds.): Fractals in Biology and Medicine, vol. III. Birkhäuser Verlag, Basel (2002)

    MATH  Google Scholar 

  32. Losa, G.A., Merlini, D., Nonnemacher, T., Weibel, E.R. (eds.): Fractals in Biology and Medicine, vol. IV. Birkhäuser Verlag, Basel (2005)

    Google Scholar 

  33. Chappard, D., Guggenbuhl, P., Legrand, E., Basle, M.F., Audran, M.: Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J. Bone Miner. Metab. 23, 24–29 (2005)

    Article  Google Scholar 

  34. Iftekharuddin, K.M., Jia, W., Marsh, R.: Fractal analysis of tumor in brain MR images. Mach. Vision and Appl. 13, 352–362

    Google Scholar 

  35. Mustonen, T., Koivisto, T., Vanninen, E., Vanninen, R., Kuikka, J.: Cerebral perfusion heterogeneity and complexity in patients with acute subarachnoid haemorrhage. Nucl. Med. Commun. 27(2), 157–164 (2006)

    Article  Google Scholar 

  36. Oczeretko, E., Rogowski, F., Jurgilewicz, D.: Fractal analysis of nuclear medicine scans. In: Losa, G.A., Merlini, D., Nonnemacher, T.F., Weibel, E.R. (eds.) Fractals in Biology and Medicine, vol. II. Birkhäuser Verlag, Basel (1998)

    Google Scholar 

  37. Oczeretko, E., Borowska, M., Kitlas, A., Borusiewicz, A., Sobolewska-Siemieniuk, M.: Fractal analysis of medical images in the irregular regions of interest. In: 8th IEEE International Conference on Bioinformatics and BioEngineering, Athens (2008)

    Google Scholar 

  38. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises, and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  39. Flandrin, P.: On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory 35, 197–199 (1989)

    Article  MathSciNet  Google Scholar 

  40. Peitgen, H.O., Saupe, D. (eds.): The Science of Fractal Images. Springer, New York (1988)

    MATH  Google Scholar 

  41. Gärdig, J.: Properties of fractal intensity surfaces. Pattern Recog. Lett. 8, 319–324 (1988)

    Article  Google Scholar 

  42. Chen, C.C., Daponte, J.S., Fox, M.D.: Fractal feature analysis and classification in medical imaging. IEEE Trans. Med. Imaging 8, 133–142 (1989)

    Article  Google Scholar 

  43. Fractal Analysis Software, http://www.scilab.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Borowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Borowska, M., Oczeretko, E., Szarmach, J. (2014). Fractal Texture Analysis in the Irregular Region of Interest of the Healing Process Using Guided Bone Regeneration. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics