Advertisement

Potable Water pp 125-151 | Cite as

The Effects of Water–Energy Nexus on Potable Water Supplies

  • Sarah LawsonEmail author
  • Qi Zhang
  • Mimansha Joshi
  • Tzu-Han Pai
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 30)

Abstract

Feedbacks between water and energy complicate the daunting task of supplying safe drinking water to a growing population. Potable water treatment and distribution require large quantities of energy and at present largely rely on fossil fuels. While the available fuel source dwindles, the demand for energy to supply drinking water will likely increase due to a growing global population, higher demand for enhanced water treatment and distribution, and the necessary use of energy-intensive alternative water sources such as wastewater and saline water. Electricity production also requires significant quantities of water and may be in direct competition for freshwater resources with potable water supply. The quantity of water used in electricity production will likely increase in future years with rising electricity demand and changes in electricity production. Electricity production can also contaminate water supply sources. Finally, climate change is affecting precipitation patterns and water demand, which will further complicate supplying drinking water to a growing population. This chapter provides an overview of the ways in which the water–energy nexus creates challenges and opportunities in meeting potable water demand.

Keywords

Water–energy nexus Climate change Water treatment and distribution Electricity generation Freshwater supply 

References

  1. 1.
    US DOE (2006) Energy demands on water resources: report to congress on the interdependency of energy and water. U.S. Department of EnergyGoogle Scholar
  2. 2.
    International Energy Agency (IEA) (2012) World energy outlook 2012. International Energy Agency, ParisGoogle Scholar
  3. 3.
    UN Water (2014) World water day. http://www.unwater.org/worldwaterday/ Accessed 1 Jan 2014
  4. 4.
    GAO (2012) Energy-water nexus: Coordinated federal approach needed to better manage energy and water tradeoffs. GAO-12-880. http://www.gao.gov/assets/650/648306.pdf. Accessed 2 Jan 2014
  5. 5.
    Rodriguez DJ, Delgado A, DeLaquil P, Sohns A (2013) Thirsty energy: working paper. Washington, DC. World Bank. http://documents.worldbank.org/curated/en/2013/01/17932041/thirsty-energy. Accessed 12 Dec 2013
  6. 6.
    US Energy Information Administration (USEIA) (2013) International energy outlook 2013. Washington, DC. http://www.eia.gov/forecasts/ieo/pdf/0484(2013).pdf. Accessed 20 Aug 2013
  7. 7.
    Cai X, Rosegrant MW (2002) Global water demand and supply projections, Part 2: results and prospects to 2025. Water Int 27(2):170–182CrossRefGoogle Scholar
  8. 8.
    WHO/UNICEF Joint monitoring programme for water supply and sanitation. Progress on drinking water and sanitation: 2012 update. http://www.unicef.org/media/files/JMPreport2012.pdf. Accessed 1 Jan 2014
  9. 9.
    Cuddihy J, Kennedy C, Byer P (2005) Energy use in Canada: Environmental impacts and opportunities in relationship to infrastructure systems. Can J Civ Eng 32(1):1–15CrossRefGoogle Scholar
  10. 10.
    Arzbaecher C, Carns K et al (2009) Program on technology innovation: Electric efficiency through water supply technologies—A roadmap. Electrical Power Research Institute, Palo Alto, CAGoogle Scholar
  11. 11.
    Miller LA, Ramaswami A, Ranjan R (2013) Contribution of water and wastewater infrastructures to urban energy metabolism and greenhouse gas emissions in cities in India. J Environ Eng 139(5):738–745. doi: 10.1061/(ASCE)EE.1943-7870.0000661 CrossRefGoogle Scholar
  12. 12.
    USEPA (2005) Economic analysis for the final stage 2 disinfectants and disinfection byproducts rule, EPA 815-R-05-010. USEPA, Washington, DCGoogle Scholar
  13. 13.
    Navigant Consulting, Inc. (2006) Refining Estimates of Water‐Related Energy Use in California. California Energy Commission, PIER Industrial/Agricultural/Water End Use Energy Efficiency Program. CEC‐500‐2006‐118Google Scholar
  14. 14.
    Kahrl F, Roland-Holst D (2008) China’s water-energy nexus. Water Policy 10(Suppl 1):51–65. doi: 10.2166/wp.2008.052 CrossRefGoogle Scholar
  15. 15.
    Stillwell AS, King CW, Webber ME, et al (2011) The energy-water nexus in Texas. Ecol Soc 16(1):2. http://www.ecologyandsociety.org/vol16/iss1/art2/. Accessed 5 Nov 2013
  16. 16.
    California Energy Commission (2005) California’s water energy relationship. http://www.energy.ca.gov/2005publications/CEC-700-2005-011/CEC-700-2005-011-SF.PDF. Accessed 8 Nov 2013
  17. 17.
    EPRI (2002) Water and sustainability: U.S. electricity consumption for water supply and treatment—The next half century. EPRI, Palo Alto, CAGoogle Scholar
  18. 18.
    Stokes J, Horvath A (2005) Life cycle energy assessment of alternative water supply systems. Int J Life Cycle Assess 11(5):335–343CrossRefGoogle Scholar
  19. 19.
    Hall MR, West J, Sherman B et al (2011) Long-term trends and opportunities for managing regional water supply and wastewater greenhouse gas emissions. Environ Sci Technol 45:5434–5440. doi: 10.1021/es103939a CrossRefGoogle Scholar
  20. 20.
    Peter-Varbanets M, Zurbrugg C, Swartz C et al (2009) Decentralized systems for potable water and the potential of membrane technology. Water Res 43:245–265CrossRefGoogle Scholar
  21. 21.
    Lawson SE (2013) Mitigating climate change in urban environments: Management of urban water supply. In: Younos T and Grady C (ed) Climate change and water resources. Springer: New YorkGoogle Scholar
  22. 22.
    Friedrich E, Buckley CA, Pillay S (2007) The use of LCA in the water industry and the case for an environmental performance indicator. Water SA 33(4):443–51Google Scholar
  23. 23.
    Tarantini M, Federica F (2001) LCA of drinking and wastewater treatment systems of Bologna city: Final results. Paper presented at Fourth IRCEW Conference, Fortaleza, Brazil. http://www.bologna.enea.it/ambtd/aquasave/files/Documents/PaperLCA.pdf. Accessed 12 Dec 2013
  24. 24.
    Crettaz P, Jolliet O, Cuanillon J-M et al (1999) Life cycle assessment of drinking water and rain water for toilets flushing. J Water Supply: Res Technol-AQUA 48(3):73–83CrossRefGoogle Scholar
  25. 25.
    Gay L, Sinha S (2012) Measuring energy efficiency in urban water systems using a mechanistic approach. J Infrastruct Syst 18(2):139–145. doi: 10.1061/(ASCE)IS.1943-555X.0000072 CrossRefGoogle Scholar
  26. 26.
    Carlson SW, Walburger A (2007) Energy index development for benchmarking water and wastewater utilities. AWWA Research Foundation, Denver, COGoogle Scholar
  27. 27.
    Mo W, Zhang Q, Mihelcic JR, Hokanson DR (2011) Embodied energy comparison of surface water and groundwater supply options. Water Res 45:5577–5586. doi: 10.1016/j.watres.2011.08.016 CrossRefGoogle Scholar
  28. 28.
    Rothausen SGSA, Conway D (2011) Greenhouse-gas emissions from energy use in the water sector. Nat Clim Chang 1:210–219. doi: 10.1038/NCLIMATE1147 CrossRefGoogle Scholar
  29. 29.
    Arpke A, Hutzler N (2006) Domestic water use in the United States: a life-cycle approach. J Ind Ecol 10(1–2):169–183Google Scholar
  30. 30.
    Plappally AK, Lienhard JH (2012) Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew Sustain Energ Rev 16:4818–4848. doi: 10.1016/j.rser.2012.05.022 CrossRefGoogle Scholar
  31. 31.
    Scott C, Pasqualetti M, Hoover J, et al (2009) Water and energy sustainability with rapid growth and climate change in the Arizona-Sonora Border Region. Arizona Water Institute. http://wsp.arizona.edu/sites/wsp.arizona.edu/files/Scott%20final%20report%2008.pdf. Accessed 11 Nov 2013
  32. 32.
    Burton FL (1996) Water and wastewater industries: characteristics and energy management opportunities. Report CR-106941, Electric Power Research Institute Report, Los Altos, CAGoogle Scholar
  33. 33.
    Venkatesh G, Brattebø H (2011) Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway). Energy 36:792–800CrossRefGoogle Scholar
  34. 34.
    Piratla KR, Ariaratnam ST, Cohen A (2012) Estimation of CO2 emissions from the life cycle of a potable water pipeline project. J Manage Eng (ASCE) 28(1):22–30CrossRefGoogle Scholar
  35. 35.
    Vince F, Aoustin E, Breant P et al (2008) LCA tool for the environmental evaluation of potable water production. Desalination 220:37–56CrossRefGoogle Scholar
  36. 36.
    USEPA (2011) Aging water infrastructure research: science and engineering for a sustainable future, EPA 600-F-11-010. USEPA, Washington, DCGoogle Scholar
  37. 37.
    Venkatesh G (2012) Cost-benefit analysis—leakage reduction by rehabilitating old water pipelines: case study of Oslo (Norway). Urban Water J 9(4):277–286. doi: 10.1080/1573062X.2012.660960 CrossRefGoogle Scholar
  38. 38.
    Filion YR, MacLean HL, Karney BW (2004) Life-cycle energy analysis of a water distribution system. J Infrastruct Syst 10:120–130. doi: 10.1061/(ASCE)1076-0342(2004)10:3(120)
  39. 39.
    Cohen R, Nelson B, Wolff G (2004) Energy down the drain: the hidden costs of California’s water supply. Natural Resources Defense Council, New YorkGoogle Scholar
  40. 40.
    USEPA (2005) Technologies and costs document for the final Long Term 2 enhanced surface 782 water treatment rule and final Stage 2 Disinfectants and Disinfection Byproducts rule. USEPA, 783 Washington, DC, EPA 815-R-05-013Google Scholar
  41. 41.
    Raucher RS, Cromwell JE III, Cooney K et al (2008) Risk and benefits of energy management for drinking water utilities. AwwaRF, DenverGoogle Scholar
  42. 42.
    Elliot T, Zeier B, Xagoraraki I, Harrington GW (2003) Energy use at Wisconsin’s drinking water facilities. Report 222-1. Energy Center of Wisconsin, Madison, WIGoogle Scholar
  43. 43.
    USEPA (2005) Economic analysis for the final long term 2 enhanced surface water treatment rule, EPA 815-R-06-001. USEPA, Washington, DCGoogle Scholar
  44. 44.
    Gomez V, Majamaa K, Pocurull E et al (2012) Determination and occurrence of organic micropollutants in reverse osmosis treatment for advanced water reuse. Water Sci Technol 66(1):61–71. doi: 10.2166/wst.2012.166 CrossRefGoogle Scholar
  45. 45.
    Hardy L, Garrido A, Juana L (2012) Evaluation of Spain’s water-energy nexus. Int J Water Resour Dev 28(1):151–170CrossRefGoogle Scholar
  46. 46.
    Kajenthira A, Siddiqi A, Anadon LD (2012) A new case for promoting wastewater reuse in Saudi Arabia: Bringing energy into the water equation. J Environ Manage 102:184–192CrossRefGoogle Scholar
  47. 47.
    Pacific Institute (2007) Table 22: installed desalination capacity by year, number of plants, and total capacity, 1945 to 2004. Available http://worldwater.org/wp-content/uploads/2013/07/Table22.pdf. Accessed 12 June 2013
  48. 48.
    Einav R, Hamssib K, Periyb D (2002) The footprint of the desalination processes on the environment. Desalination 152:141–154CrossRefGoogle Scholar
  49. 49.
    Munoz I, Fernandez-Alba AR (2008) Reducing the environmental impacts of reverse osmosis desalination by using brackish groundwater resources. Water Res 42(3):801–811. doi: 10.1016/j.watres.2007.08.021 CrossRefGoogle Scholar
  50. 50.
    Dundorf S, MacHarg J, Sessions B, Seacord TF (2009) Optimizing lower energy seawater desalination, The Affordable Desalination Collaboration. IDA World Congress, Dubai, UAE http://www.usbr.gov/research/AWT/reportpdfs/ADC_SWRO_DA.pdf Accessed 12 December 2013
  51. 51.
    Raluy RG, Serra L, Uche J (2005) Life cycle assessment of water production technologies: Part 1. Int J Life Cycle Assess 10(4):285–293. doi: 10.1065/lca2004.09.179.1 CrossRefGoogle Scholar
  52. 52.
    Pasqualino J, Meneses M, Abella M, Castells F (2009) LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant. Environ Sci Technol 43(9):3300–3307CrossRefGoogle Scholar
  53. 53.
    Menses M, Pasqualino JC, Castells F (2010) Environmental assessment of urban wastewater reuse: Treatment alternatives and applications. Chemosphere 81:266–272. doi: 10.1016/j.chemosphere.2010.05.053 CrossRefGoogle Scholar
  54. 54.
    Amores MJ, Meneses M, Pasqualino J, Anton A, Castells F (2013) Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. J Clean Prod 43:84–92. doi: 10.1016/j.jclepro.2012.12.033 CrossRefGoogle Scholar
  55. 55.
    Rygaard M, Binning PJ, Albrechtsen H-J (2011) Increasing urban water self-sufficiency: new era, new challenges. J Env Manag 92:185–194. doi: 10.1016/j.jenvman.2010.09.009 CrossRefGoogle Scholar
  56. 56.
    Munoz I, Mila-i-Canals L, Fernandez-Alba AR (2010) Life cycle assessment of water supply plans in Mediterranean Spain: The Ebro River transfer versus the AGUA Programme. J Indust Qual 14(6):902–918. doi: 10.1111/j.1530-9290.2010.00271.x Google Scholar
  57. 57.
    Blanco J, Malato S, Fernández- Ibañez P et al (2009) Review of feasible solar energy applications to water processes. Renew Sustain Energ Rev 13:1437–1445CrossRefGoogle Scholar
  58. 58.
    Hindiyeh M, Ali A (2010) Investigating the efficiency of solar energy system for drinking water disinfection. Desalination 259:208–215. doi: 10.1016/j.desal.2010.04.004 CrossRefGoogle Scholar
  59. 59.
    Al-Smairan M (2012) Application of photovoltaic array for pumping water as an alternative to diesel engines in Jordan Badia. Tall Hassan Station: Case study. Renew Sustain Energ Rev 16:4500–4507CrossRefGoogle Scholar
  60. 60.
    Jasrotia S, Kansal A, Kishore VV (2012) Application of solar energy for water supply and sanitation in Arsenic affected rural areas: a study for Kaudikasa village, India. J Clean Prod 37:389–393. doi: 10.1016/j.jclepro.2012.07.030 CrossRefGoogle Scholar
  61. 61.
    Barrios R, Siebel M, van der Helm A et al (2008) Environmental and financial life cycle impact assessment of drinking water production at Waternet. J Clean Prod 16:471–476. doi: 10.1016/j.jclepro.2006.07.052 CrossRefGoogle Scholar
  62. 62.
    Bonton A, Bouchard C, Barbeau B, Jedrzejak S (2012) Comparative life cycle assessment of water treatment plants. Desalination 284:42–54CrossRefGoogle Scholar
  63. 63.
    Chandel MK, Pratson LF, Jackson RB (2011) The potential impacts of climate-change policy on freshwater use in thermoelectric power generation. Energy Policy 39:6234–6242. doi: 10.1016/j.enpol.2011.07.022 CrossRefGoogle Scholar
  64. 64.
    Kenny JF, Barber NL, Hutson SS, et al (2009) Estimated use of water in the United States in 2005: U.S. Geological Survey Circular 1344, 52 p. http://pubs.usgs.gov/circ/1344/pdf/c1344.pdf Accessed 15 Aug 2012
  65. 65.
    Chen L, Roy SB, Goldstein RA (2013) Projected freshwater withdrawals under efficiency scenarios for electricity generation and municipal use in the United States for 2030. JAWRA 49(1):231–246. doi: 10.1111/jawr.12013 Google Scholar
  66. 66.
    Macknick J, Newmark R, Heath G et al (2012) Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ Res Lett 7(4):045802. doi: 10.1088/1748-9326/7/4/045802 CrossRefGoogle Scholar
  67. 67.
    Feeley TJ, Skone TJ, Stiegel GJ, McNemar A, Nemeth M, Schimmoller B, Murphy JT, Manfredo L (2008) Water: a critical resource in the thermoelectric power industry. Energy 33:1–11CrossRefGoogle Scholar
  68. 68.
    Fthenakis V, Kim HC (2010) Life-cycle uses of water in U.S. electricity generation. Renew Sustain Energ Rev 14:2039–2048. doi: 10.1016/j.rser.2010.03.008 CrossRefGoogle Scholar
  69. 69.
    Sovacool BK, Sovacool KE (2009) Identifying future electricity-water tradeoffs in the United States. Energy Policy 37:2763–2773. doi: 10.1016/j.enpol.2009.03.012 CrossRefGoogle Scholar
  70. 70.
    Davies EGR, Kyle P, Edmonds JA (2013) An integrated assessment of global and regional water demands for electricity generation to 209. Adv Water Resour 52:296–313CrossRefGoogle Scholar
  71. 71.
    Grubert EA, Beach FC, Webber ME (2012) Can switching fuels save water? A lice cycle quantification of freshwater consumption for Texas coal and natural gas-fire electricity. Environ Res Lett 7(4):045801CrossRefGoogle Scholar
  72. 72.
    National Energy Technology Laboratory (NETL) (2010) Estimating freshwater needs to meet future thermoelectric generation requirements: 2010 Update. Available: http://www.netl.doe.gov/energy-analyses/pubs/2010_Water_Needs_Analysis.pdf. Accessed 15 Aug 2013
  73. 73.
    Zhai H, Rubin ES, Versteeg PL (2011) Water use at pulzerived coal power plants with posstcombustion carbon capture and storage. Environ Sci Technol 45(6):2479–2485. doi:10.1021/es1034443. Epub 2011 Feb 17CrossRefGoogle Scholar
  74. 74.
    Meldrum J, Nettles-Anderson S, Heath G, Macknick J (2013) Life cycle water use for electricity generation: a review and harmonization of literature estimates. Environ Res Lett 8:015031. doi: 10.1088/1748-9326/8/1/015031 CrossRefGoogle Scholar
  75. 75.
    Kyle P, Davies EGR, Dooley JJ et al (2013) Influence of climate change mitigation technology on global demands of water for electricity generation. Int J Greenhouse Gas Control 13:112–123. doi: 10.1016/j.ijggc.2012.12.006 CrossRefGoogle Scholar
  76. 76.
    National Energy Technology Laboratory (NETL) (2009) Impact of drought on US steam electric power plant cooling water intakes and related water resource management issues. Available: http://www.netl.doe.gov/technologies/coalpower/ewr/water/pdfs/final-drought%20impacts.pdf. Accessed 15 Aug 2013
  77. 77.
    Hightower M, Pierce S (2008) The energy challenge. Nature 452:285–286CrossRefGoogle Scholar
  78. 78.
    Wei X, Wei H, Viadero RC (2010) Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands. Sci Total Environ 409(5):941–948CrossRefGoogle Scholar
  79. 79.
    Jablonska B (2008) Estimating the water pollution in Potok Golawiecki, Poland, based on selected water quality indicators. Arch Environ Prot 34(1):3–12Google Scholar
  80. 80.
    Hopkins RL, Altier BM, Haselman C et al (2013) Exploring the legacy effects of surface coal mining on stream chemistry. Hydrobiologia 713(1):87–95. doi: 10.1007/s10750-013-1494-9 CrossRefGoogle Scholar
  81. 81.
    Runkel RL, Bencala KE, Kimball BA et al (2009) A comparison of pre- and post-remediation water quality, Mineral Creek, Colorado. Hydrol Processes 23(23):3319–3333. doi: 10.1002/hyp.7427 CrossRefGoogle Scholar
  82. 82.
    Cravotta CA (2008) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations. Appl Geochem 23:166–202. doi: 10.1016/j.apgeochem.2007.10.011 CrossRefGoogle Scholar
  83. 83.
    Singh AK, Mahato MK, Neogi B et al (2011) Hydrogeochemistry, elemental flux, and quality assessment of mine water in the Pootkee-Balihari mining area, Jharia coalfield, India. Mine Water Environ 30(3):197–207CrossRefGoogle Scholar
  84. 84.
    Singh AK, Mahato MK, Neogi B et al (2010) Quality assessment of mine water in the Raniganj coalfield area, India. Mine Water Environ 29(4):248–262. doi: 10.1007/s10230-010-0108-2 CrossRefGoogle Scholar
  85. 85.
    Ibeanusi VM, Wilde EW (1998) Bioremediation of coal pile run off waters using an integrated microbial ecosystem. Biotechnol Lett 20(11):1077–1079CrossRefGoogle Scholar
  86. 86.
    Baba A, Tayfur G (2011) Groundwater contamination and its effect on health in Turkey. Environ Monit Assess 183:77–94. doi: 10.1007/s10661-011-1907-z CrossRefGoogle Scholar
  87. 87.
    Praharaj T, Powell MA, Hart BR, Tripathy S (2002) Leachability of elements from subbituminous coal fly ash from India. Environ Int 27:609–15CrossRefGoogle Scholar
  88. 88.
    Farooqi A, Masuda H, Firdous N (2007) Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut 145:839–849. doi: 10.1016/j.envpol.2006.05.007 CrossRefGoogle Scholar
  89. 89.
    Rai PK (2010) Seasonal monitoring of heavy metals and physiochemical characteristics in a lentic ecosystem of subtropical region, India. Environ Monit Assess 165:407–433. doi: 10.1007/s10661-009-0956-z CrossRefGoogle Scholar
  90. 90.
    Ripley EA, Redmann RE, Crowder AA (1996) Environmental effects of mining. St. Lucie Press, Delray Beach, FLGoogle Scholar
  91. 91.
    Gammon CH, Brown A, Poulson SR et al (2013) Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage. Appl Geochem 31:228–238. doi: 10.1016/j.apgeochem.2013.01.008 CrossRefGoogle Scholar
  92. 92.
    Baba A, Kaya A, Birsoy YK (2003) The effect of Yatagan Thermal Power Plant (Mugla, Turkey) of the quality of surface and groundwaters. Water Air Soil Pollut 149:93–111CrossRefGoogle Scholar
  93. 93.
    Demirak A, Balci A, Dalman O et al (2005) Chemical investigation of water resources around the Yatagan Thermal Power Plant of Turkey. Water Air Soil Pollut 162(1–4):171–181CrossRefGoogle Scholar
  94. 94.
    Hamada N, Ogino H (2012) Food safety regulations: what we learned from the Fukushima nuclear accident. J Environ Radioact 111:83–99CrossRefGoogle Scholar
  95. 95.
    Murakami M, Oki T (2012) Estimation of thyroid doses and health risks resulting from the intake of radioactive iodine in foods nad drinking water by the citizens of Tokyo after the Fukushima nuclear accident. Chemosphere 87:1355–1360CrossRefGoogle Scholar
  96. 96.
    Bugai DA, Water RD, Dzhepo SP, et al (1997) The cooling pond of the Chernobyl nuclear power plant: a groundwater remediation case history. Water Resour Res 33(4):677–688Google Scholar
  97. 97.
    Hanslik E, Ivanovova D, Jedinakova-Krizova V et al (2009) Concentration of radionuclides in hydrosphere affected by Temelin Nuclear Power Plant in Czech Republic. J Environ Radioact 100:558–563CrossRefGoogle Scholar
  98. 98.
    Karecha PA, Hansen JE (2013) Prevented mortality and greenhouse gas emissions from historical and projected nuclear power. Environ Sci Technol 47(9):4889–4895CrossRefGoogle Scholar
  99. 99.
    Rodgher S, de Azevedo H, Ferrari CR et al (2013) Evaluation of surface water quality in aquatic bodies under the influence of uranium mining (MG, Brazil). Environ Monit Assess 185:2395–2406. doi: 10.1007/s10661-012-2719-5 CrossRefGoogle Scholar
  100. 100.
    Qian Y, Zheng MH, Gao L et al (2005) Heavy metal contamination and its environmental risk assessment in surface sediments from Lake Dongting, People’s Republic of China. Bull Environ Contam Toxicol 75(1):204–210CrossRefGoogle Scholar
  101. 101.
    Chevychelov AP, D’yachkovskii AP, Sobakin PI et al (2010) Surface water radioactive pollution in South Yakutia anthropogenic landscapes. Contemp Probl Ecol 3(4):381–385CrossRefGoogle Scholar
  102. 102.
    Sowder JT, Kelleners TJ, Reddy KJ (2010) The origin and fate of arsenic in coalbed natural gas-produced water ponds. J Environ Qual 39(5):1604–1615. doi: 10.2134/jeq2009.0428 CrossRefGoogle Scholar
  103. 103.
    Wang XX, Yang WH (2008) Modelling potential impacts of coalbed methane development on stream water quality in an American watershed. Hydrol Processes 22(1):87–103. doi: 10.1002/hyp.6647 CrossRefGoogle Scholar
  104. 104.
    US EPA Office of Water (2004) Evaluation of impacts to underground sources of drinking water by hydraulic fracturing of coalbed methane reservoirs. EPA 816-R-04-003. On-line. Available: http://water.epa.gov/type/groundwater/uic/class2/hydraulicfracturing/wells_coalbedmethanestudy.cfm. Accessed 10 Aug 2013
  105. 105.
    Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci USA 108(20):8172–8176CrossRefGoogle Scholar
  106. 106.
    Saba T, Orzechowski M (2011) Lack of data to support a relationship between methane contamination of drinking water wells and hydraulic fracturing. Proc Natl Acad Sci USA 108(37):E663Google Scholar
  107. 107.
    Schon, SC (2011) Hydraulic fracturing not responsible for methane migration. Proc Natl Acad Sci USA 108(37):E664Google Scholar
  108. 108.
    Love BJ, Einhauser MD, Nejadhashemi AP (2011) Effects on aquatic and human health due to large scale bioenergy crop expansion. Sci Total Environ 409(17):3215–3229CrossRefGoogle Scholar
  109. 109.
    Love B, Nejadhashemi AP (2011) Environmental impact analysis of biofuel crops expansion in the Saginaw River Watershed. J Biobased Mater Bioenergy 5(1):30–54. doi: 10.1166/jbmb.2011.1119 CrossRefGoogle Scholar
  110. 110.
    Secchi S, Gassman PW, Jha M et al (2011) Potential water quality changes due to corn expansion in the Upper Mississippi River Basin. Ecol Appl 21(4):1068–1084. doi: 10.1890/09-0619.1 CrossRefGoogle Scholar
  111. 111.
    de Fraiture C, Giordano M, Liao Y (2008) Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10(S1):67–81CrossRefGoogle Scholar
  112. 112.
    Twomey KM, Stillwell AS, Webber ME (2010) The unintended energy impacts of increased nitrate contamination from biofuels production. J Environ Monit 12(1):218–224CrossRefGoogle Scholar
  113. 113.
    IPCC (2007) Climate change 2007: synthesis report. Core Writing Team, Pachauri RK and Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, 104 ppGoogle Scholar
  114. 114.
    Ragab R, Prudhomme C (2002) Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosyst Eng 81(1):3–34. doi: 10.1006/bioe.2001.0013 CrossRefGoogle Scholar
  115. 115.
    De Wit M, Stankiewicz J (2006) Changes in surface water supply across Africa with predicted climate change. Science 311(5769):1917–1921CrossRefGoogle Scholar
  116. 116.
    Arnell NW (1999) Climate change and global water resources. Global Environ Change 9:S31–S49CrossRefGoogle Scholar
  117. 117.
    Mizyed N (2009) Impacts of climate change on water resources availability and agricultural water demand in the west bank. Water Resour Manag 23:2015–2029. doi: 10.1007/s11269-008-9367-0 CrossRefGoogle Scholar
  118. 118.
    Rosenberg NJ, Brown RA, Izaurralde RC, Thomson AM (2003) Integrated assessment of HadleyCentre (HadCM2) climate change projections on agricultural productivity and irrigation water supply in the conterminous United States I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model. J Agri Meterol 117:73–96. doi: 10.1016/S0168-1923(03)00025-X CrossRefGoogle Scholar
  119. 119.
    Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072. doi: 10.1126/science.1128845 CrossRefGoogle Scholar
  120. 120.
    Van Vliet MTH, Yearsley JR, Ludwig F et al (2012) Vulnerability of US and European electricity supply to climate change. Nat Clim Change 2(9):676–681. doi: 10.1038/NCLIMATE1546 Google Scholar
  121. 121.
    Loaiciga HA, Pingel TJ, Garcia ES (2012) Sea water intrusion by sea-level rise: Scenarios for the 21st Century. Groundwater 50(1):37–47CrossRefGoogle Scholar
  122. 122.
    Langevin CD, Zygnerski M (2013) Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern. Groundwater 51(5):781–803CrossRefGoogle Scholar
  123. 123.
    Faneca Sanchez M, Gunnink JL, van Baaren ES, Oude Essink GHP, Siemon B, Auken E, Elderhorst W, de Louw PGB (2012) Modelling climate change effects on a Dutch coastal groundwater system using airborne electromagnetic measurements. Hydrol Earth Syst Sci 16:4499–4516. doi: 10.5194/hess-16-4499-2012 CrossRefGoogle Scholar
  124. 124.
    Shaha DC, Cbo YK, Kim TW (2013) Effects of river discbarge and tide driven sea level variation on saltwater intrusion in Sumjin River estuary: An application of finite-volume coastal ocean model. J Coast Res 29(2):60–470. Coconut Creek (Florida), ISSN 0749-0208Google Scholar
  125. 125.
    Rice KC, Hong B, Shen J (2012) Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA. J Environ Manag 111:61–69. doi: 10.1016/j.jenvman.2012.06.036 CrossRefGoogle Scholar
  126. 126.
    Pierce DW, Barnett TP, Hidalgo HG, et al (2008) Attribution of declining Western U.S. snowpack to human effects. J Clim 2:6425–6444. doi: 10.1175/2008JCLI2405.1
  127. 127.
    Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD (2008) Human-induced changes in the hydrology of the western United States. Science 319:1080–1083. doi: 10.1126/science.1152538 CrossRefGoogle Scholar
  128. 128.
    Payne JT, Wood AW, Hamlet AF, Palmer RN, Lettenmaier DP (2004) Mitigating the effects of climate change on the water resources of the Columbia River Basin. Clim Change 62:233–256CrossRefGoogle Scholar
  129. 129.
    Fischer G, Tubiello FN, van Velthuizen H, Wiberg DA (2007) Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080 Technological Forecasting & Social Change 74:1083–1107. doi: 10.1016/j.techfore.2006.05.021
  130. 130.
    Doll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective. Clim Change 54(3):269–293. doi: 10.1023/A:1016124032231 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sarah Lawson
    • 1
    Email author
  • Qi Zhang
    • 2
  • Mimansha Joshi
    • 3
  • Tzu-Han Pai
    • 4
  1. 1.Departments of Environmental Studies & Science and PhysicsRandolph CollegeLynchburgUSA
  2. 2.Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  3. 3.School of Environment, Resources and Development, Asian Institute of TechnologyPathumthaniThailand
  4. 4.H2O Clinical LLC.CockeysvilleUSA

Personalised recommendations