Skip to main content

Aspects of Global Analysis of Circle-Valued Mappings

  • Chapter
  • First Online:
Topics in Mathematical Analysis and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 94))

  • 1456 Accesses

Abstract

We deal with the minimum number of critical points of circular functions with respect to two different classes of functions. The first one is the whole class of smooth circular functions and, in this case, the minimum number is the so called circular \(\varphi\) -category of the involved manifold. The second class consists of all smooth circular Morse functions, and the minimum number is the so called circular Morse–Smale characteristic of the manifold. The investigations we perform here for the two circular concepts are being studied in relation with their real counterparts. In this respect, we first evaluate the circular \(\varphi\)-category of several particular manifolds. In Sect. 5, of more survey flavor, we deal with the computation of the circular Morse–Smale characteristic of closed surfaces. Section 6 provides an upper bound for the Morse–Smale characteristic in terms of a new characteristic derived from the family of circular Morse functions having both a critical point of index 0 and a critical point of index n. The minimum number of critical points for real or circle valued Morse functions on a closed orientable surface is the minimum characteristic number of suitable embeddings of the surface in \(\mathbb{R}^{3}\) with respect to some involutive distributions. In the last section we obtain a lower and an upper bound for the minimum characteristic number of the embedded closed surfaces in the first Heisenberg group with respect to its noninvolutive horizontal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrica, D.: On a result concerning a property of closed manifolds. Math. Inequalities Appl. 4(1), 151–155 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrica, D.: Critical Point Theory and Some Applications. Cluj University Press, Cluj-Napoca (2005)

    Google Scholar 

  3. Andrica, D., Funar, L.: On smooth maps with finitely many critical points. J. Lond. Math. Soc. 69(2), 783–800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrica, D., Funar, L.: On smooth maps with finitely many critical points. Addendum. J. Lond. Math. Soc. 73(2), 231–236 (2006)

    Article  MathSciNet  Google Scholar 

  5. Andrica, D., Funar, L., Kudryavtseva, E.A.: The minimal number of critical points of maps between surfaces. Russ. J. Math. Phys. 16(3), 363–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrica, D., Mangra, D.: Morse-Smale characteristic in circle-valued Morse theory. Acta Universitatis Apulensis 22, 215–220 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Andrica, D., Mangra, D.: Some remarks on circle-valued Morse functions. Analele Universitatii din Oradea, Fascicola de Matematica, 17(1), 23–27 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Andrica, D., Pintea, C.: Recent results on the size of critical sets. In: Pardalos, P., Rassias, Th.M. (eds.) Essays in Mathematics and Applications. In honor of Stephen Smale’s 80th Birthday, pp. 17–35. Springer, Heidelberg (2012)

    Google Scholar 

  9. Andrica, D., Todea, M.: A counterexample to a result concerning closed manifolds. Nonlinear Funct. Anal. Appl. 7(1), 39–43 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Andrica, D., Mangra, D., Pintea, C.: The circular Morse-Smale characteristic of closed surfaces. Bull. Math. Soc. Sci. Math. Roumanie (to appear)

    Google Scholar 

  11. Andrica, D., Mangra, D., Pintea, C.: The minimum number of critical points of circular Morse functions. Stud. Univ. Babeş Bolyai Math. 58(4), 485–495 (2013)

    MathSciNet  Google Scholar 

  12. Balogh, Z.M.: Size of characteristic sets and functions with prescribed gradient. J. Reine Angew. Math. 564, 63–83 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Balogh, Z.M., Pintea, C., Rohner, H.: Size of tangencies to non-involutive distributions. Indiana Univ. Math. J. 60, 2061–2092 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, K.C.: Critical groups, Morse theory and applications to semilinear elliptic BVP s . In: Wen-tsun, W., Min-de, C. (eds.) Chinese Math, into the 21st Century, pp. 41–65. Peking University Press, Beijing (1991)

    Google Scholar 

  15. Chang, K.C.: Infinite dimensional Morse theory and multiple solution problems. In: PNLDE 6. Birkhüser, Basel (1993)

    Google Scholar 

  16. Chern, S., Lashof, R.K.: On the total curvature of immersed manifolds II. Michigan J. Math. 79, 306–318 (1957)

    MathSciNet  MATH  Google Scholar 

  17. Chern, S., Lashof, R.K.: On the total curvature of immersed manifolds I. Am. J. Math. 5 5–12 (1958)

    MathSciNet  MATH  Google Scholar 

  18. Cicortaş, G., Pintea, C., Ţopan, L.: Isomorphic homotopy groups of certain regular sets and their images. Topol. Appl. 157, 635–642 (2010)

    Article  MATH  Google Scholar 

  19. Cornea, O., Lupton, L., Oprea, J. Tanré, T.: Lusternik-Schnirelmann Category. Mathematical Surveys and Monographs, vol. 103. American Mathematical Society, Providence (2003)

    Google Scholar 

  20. Dimca, A.: Singularities and Topology of Hypersurfaces. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  21. Dranishnikov, A., Katz, M., Rudyak, Yu.: Small values of the Lusternik-Schnirelmann category for manifolds. Geom. Topol. 12(3), 1711–1727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ehresmann, C.: Les connexions infinitésimales dans un espace fibré différentiable, pp. 29–55. Colloque de Topologie, Bruxelles (1950)

    Google Scholar 

  23. Eliashberg, Y.: Contact 3-manifolds twenty years since J. Martinet’s work. Ann. Inst. Fourier 42(1–2), 165–192 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farber, M.: Topology of Closed One-Forms. Mathematical Surveys and Monographs, vol. 108. AMS, Providence (2003)

    Google Scholar 

  25. Funar, M.: Global classification of isolated singularities in dimensions (4, 3) and (8, 5). Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10, 819–861 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Funar, L. Pintea, C., Zhang, P.: Examples of smooth maps with finitely many critical points in dimensions (4, 3), (8, 5) and (16, 9). Proc. Am. Math. Soc. 138, 355–365 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gavrilă, C.: Functions with minimal number of critical points. Ph.D. thesis, Heidelberg (2001)

    Google Scholar 

  28. Ghoussonb, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  29. Hajduk, B.: Comparing handle decomposition of homotopy equivalent manifolds. Fund. Math. 95(1), 3–13 (1977)

    MathSciNet  Google Scholar 

  30. Klingenberg, W.: Lectures on Closed Geodesics. Grundlehren der Mathematischen Wissenschaften, vol. 230. Springer, New York (1978)

    Google Scholar 

  31. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Boundary value problems of Robin type for the Brinkmann and Darcy-Forchheimer-Brinkmann systems in Lipschitz domains. J. Math. Fluid Mech., DOI: 10.1007/s00021-014-0176-3

    Google Scholar 

  32. Kohr, M., Pintea, C., Wendland, W.L.: Brinkman-type operators on Riemannian manifolds: transmission problems in Lipschitz and C 1 domains. Potential Anal. 32, 229–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuiper, N.H.: Tight embeddings and Maps. Submanifolds of geometrical class three in E n. In: The Chern Symposium 1979, Proceedings of the International Symposium on Differential Geometry in honor of S.-S. Chern, Berkley, pp. 79–145. Springer, New York (1980)

    Google Scholar 

  34. Mangra, D.: Estimation of the number of critical points of circle-valued mappings. In: Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, ICTAMI 2011, Acta Universitatis Apulensis, Alba Iulia, pp. 195–200, 21–24 July 2011, Special Issue

    Google Scholar 

  35. Matsumoto, Y.: An introduction to Morse Theory. Iwanami Series in Modern Mathematics, 1997. Translations of Mathematical Monographs, vol. 208. AMS, Providence (2002)

    Google Scholar 

  36. Milnor, J.W.: Morse Theory. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963)

    Google Scholar 

  37. Milnor, J.W.: Lectures on the h-Cobordism. Princeton University Press, Princeton (1965)

    Google Scholar 

  38. Mitrea, M., Taylor, M.: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163, 181–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nicolaescu, L.: An Invitation to Morse Theory. Universitext, 2nd edn. Springer, New York (2011)

    Google Scholar 

  40. Pajitnov, A.: Circle-Valued Morse Theory. Walter de Gruyter, Berlin (2006)

    Book  MATH  Google Scholar 

  41. Palais, R.S., Terng, C.-L.: Critical Point Theory and Submanifold Geometry. Lecture Notes in Mathematics, vol. 1353. Springer, Berlin (1988)

    Google Scholar 

  42. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159 (2002)

    Google Scholar 

  43. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109 (2003)

    Google Scholar 

  44. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245 (2003)

    Google Scholar 

  45. Pintea, C.: Continuous mappings with an infinite number of topologically critical points. Ann. Polon. Math. 67(1), 87–93 (1997)

    MathSciNet  MATH  Google Scholar 

  46. Pintea, C.: Differentiable mappings with an infinite number of critical points. Proc. Am. Math. Soc. 128(11), 3435–3444 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pintea, C.: A measure of the deviation from there being fibrations between a pair of compact manifolds. Diff. Geom. Appl. 24, 579–587 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pintea, C.: The plane CS non-criticality of certain closed sets. Topol. Appl. 154, 367–373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pintea, C.: The size of some critical sets by means of dimension and algebraic \(\varphi\)-category. Topol. Methods Nonlinear Anal. 35, 395–407 ( 2010)

    MathSciNet  MATH  Google Scholar 

  50. Pintea, C.: Smooth mappings with higher dimensional critical sets. Canad. Math. Bull. 53, 542–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pitcher, E.: Critical points of a map to a circle. Proc. Natl. Acad. Sci. USA 25, 428–431 (1939)

    Article  MathSciNet  Google Scholar 

  52. Pitcher, E.: Inequalities of critical point theory. Bull. Am. Math. Soc. 64(1), 1–30 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  53. Takens, F.: The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelmaann category. Inventiones Math. 6, 197–244 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, Z.Q.: On a superlinear elliptic equation. Analyse Non Linéaire 8, 43–58 (1991)

    MATH  Google Scholar 

  55. Ziltener, F.: Coisotropic submanifolds, leaf-wise fixed points, and presymplectic embeddings. J. Symplectic Geom. 8(1), 1–24 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The present material was elaborated in the period of the Fall Semester 2013 when the first author was a Mildred Miller Fort Foundation Visiting Scholar at Columbus State University, Georgia, USA. He takes this opportunity to express all the thanks for the nice friendship showed and for the excellent facilities offered during his staying.

The third author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Andrica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andrica, D., Mangra, D., Pintea, C. (2014). Aspects of Global Analysis of Circle-Valued Mappings. In: Rassias, T., Tóth, L. (eds) Topics in Mathematical Analysis and Applications. Springer Optimization and Its Applications, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-06554-0_4

Download citation

Publish with us

Policies and ethics