Skip to main content

A Class of Functional-Integral Equations with Applications to a Bilocal Problem

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 94))

Abstract

Let α ≤ a < b ≤ β be some real numbers, \(K: [\alpha,\beta ] \times [\alpha,\beta ] \times [\alpha,\beta ] \times [\alpha,\beta ] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}\) and \(g: [\alpha,\beta ] \rightarrow \mathbb{R}^{m}\) be continuous functions. In this work, using the Picard operator technique in a \(\mathbb{R}_{+}^{m}\)-metric space, we study the following functional-integral equation

$$\displaystyle{x(t) =\int _{ a}^{b}K(t,s,a,b,x(s))ds + g(t),\ t \in [\alpha,\beta ].}$$

As an application, the following bilocal problem

$$\displaystyle{-x''(t) + px'(t) + qx(t) = f(t,x(t)),\ t \in [\alpha,\beta ],\ \ x(a) = 0,x(b) = 0.}$$

is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allaire, G., Kaber, S.M.: Numerical Linear Algebra. Texts in Applied Mathematics, vol. 55. Springer, New York (2008)

    Google Scholar 

  2. Anselone, P.M.: Nonlinear Integral Equations. The University of Wisconsin Press, Madison (1964)

    Google Scholar 

  3. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Basel (1990)

    MATH  Google Scholar 

  4. Bailey, P.B., Shampine, L.F.,Waltman, P.E.: Nonlinear Two Point Boundary Value Problems. Academic, New York (1968)

    MATH  Google Scholar 

  5. Bernfeld, S., Lakshmikantham, V.: An Introduction to Nonlinear Boundary Value Problems. Academic, New York (1974)

    MATH  Google Scholar 

  6. Bota-Boriceanu, M.F., Petruşel, A.: Ulam-Hyers stability for operatorial equations. An. Stiinţ. Univ. “Al. I. Cuza” Iaşi Mat. 97, 65–74 (2011)

    Google Scholar 

  7. Degla, G.A.: A unifying maximum principle for conjugate boundary value problems. SISSA Ref. 145/1999 M, Trieste (1999)

    Google Scholar 

  8. Deimling, K.: Multivalued Differential Equations. W. de Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  9. Ehme, J.A.: Differentiation of solutions of boundary value problems with respect to nonlinear boundary conditions. J. Differ. Equ. 101, 139–147 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fabry, Ch., Habets, P.: The Picard boundary value problem for nonlinear second order vector differential equations. Univ. Catholique Louvain, Rep. no. 143 (1980)

    Google Scholar 

  11. Fitzpatrick, P.M., Petryshyn, W.V.: Galerkin methods in the constructive solvability of nonlinear Hammerstein equations with applications to differential equations. Trans. Am. Math. Soc. 238, 321–340 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Găvruţă, P., Găvruţă, L.: A new method for the generalized Hyers-Ulam-Rassias stability. Int. J. Nonlinear Anal. Appl. 1(2), 11–18 (2010)

    MATH  Google Scholar 

  13. Guo, D., Lakshmikantham, V., Liu, X.: Integral Equations in Abstract Spaces. Kluwer Academic, Dordrecht (1996)

    Book  MATH  Google Scholar 

  14. Hirsch, M.W., Pugh, C.C.: Stable manifolds and hyperbolic sets. In: Proceedings of Symposium on Pure Mathematics, vol. 14, pp. 133–143. American Mathematical Society, Providence (1970)

    Google Scholar 

  15. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I. Theory/vol. II. Applications. Kluwer Academic, Dordrecht (1997/1999)

    Google Scholar 

  16. Kamenskii, M., Obuhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. W. de Gruyter, Berlin (2001)

    Book  MATH  Google Scholar 

  17. Krasnoselskii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, New York (1964)

    Google Scholar 

  18. Miller, K.S., Schiffer, M.M.: On the Green’s functions of ordinary differential systems. Proc. Am. Math. Soc. 3, 433–441 (1952)

    MathSciNet  MATH  Google Scholar 

  19. Miller, K.S., Schiffer, M.M.: Monotonic properties of the Green’s function. Proc. Am. Math. Soc. 3, 948–956 (1952)

    MathSciNet  MATH  Google Scholar 

  20. Nica, O.: Fixed point methods for nonlinear differential systems with nonlocal conditions. Ph.D. Thesis, Babeş-Bolyai University Cluj-Napoca (2013)

    Google Scholar 

  21. Opial, Z.: On a theorem of O. Arama. J. Differ. Equ. 3, 88–91 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York (1970)

    MATH  Google Scholar 

  23. Perov, A.I.: On the Cauchy problem for a system of ordinary differential equations. Pviblizhen. Met. Reshen. Differ. Uravn. 2, 115–134 (1964) (in Russian)

    MathSciNet  Google Scholar 

  24. Perov, A.I., Kibenko, A.V.: On a certain general method for investigation of boundary value problems. Izv. Akad. Nauk SSSR Ser. Mat. 30, 249–264 (1966) (in Russian)

    MathSciNet  MATH  Google Scholar 

  25. Petru, T.P., Petruşel, A., Yao, J.-C.: Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwan. J. Math. 15(5), 2195–2212 (2011)

    MATH  Google Scholar 

  26. Petruşel, A.: Operatorial Inclusions. House the Book of Science, Cluj-Napoca (2001)

    Google Scholar 

  27. Piccinini, L.C., Stampacchia, G., Vidossich G.: Ordinary Differential Equations in \(\mathbb{R}^{n}\). Springer, Berlin (1984)

    MATH  Google Scholar 

  28. Precup, R.: Methods in Nonlinear Integral Equations. Kluwer Academic, Dordrecht (2002)

    Book  MATH  Google Scholar 

  29. Protter, M.H., Weinberger, H.F.: Maximum-Principles in Different Equations. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  30. Rus, I.A.: Sur la positivité de la fonction de Green correspondante au probleme bilocal. Glasnik Math. 5, 85–90 (1999)

    Google Scholar 

  31. Rus, I.A.: A fibre generalized contraction theorem and applications. Mathematica 41, 85–90 (1999)

    MathSciNet  Google Scholar 

  32. Rus, I.A.: Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10(2), 305–320 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Rus, I.A.: Some nonlinear functional differential and integral equations via weakly Picard operator theory: a survey. Carpathian J. Math. 26, 230–258 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Rus, I.A.: Ulam stability of the operatorial equations. In: Rassias, Th.M., Brzdek, J. (eds.) Functional Equations in Mathematical Analysis, pp. 287–305. Springer, Berlin (2012)

    Google Scholar 

  35. Rus I.A.: Results and problems in Ulam stability of operatorial equations and inclusions. In: Rassias, Th.M. (ed.) Handbook of Functional Equations-Stability Theory. Springer, Berlin (2014)

    Google Scholar 

  36. Rus, I.A.: Picard operators and applications. Sci. Math. Jpn. 58, 101–219 (2003)

    MathSciNet  Google Scholar 

  37. Rus, I.A., Şerban, M.A.: Some generalizations of a Cauchy lemma and applications. In: Topics in Mathematics, Computer Science and Philosophy, pp. 173–181. Cluj University Press, Cluj-Napoca (2008)

    Google Scholar 

  38. Rus, I.A., Petruşel, A., Petruşel, G.: Fixed Point Theory. Cluj University Press, Cluj-Napoca (2008)

    MATH  Google Scholar 

  39. Rus, I.A., Petrusel, A., Serban, M.A.: Fibre Picard operators on gauge spaces and applications. Z. Anal. Anwend. 27, 407–423 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sotomayor, J.: Smooth dependence of solution of differential equation on initial data: a simple proof. Bol. Soc. Math. Brasil 4, 55–59 (1973)

    Article  MathSciNet  Google Scholar 

  41. Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic, New York/London (1968)

    MATH  Google Scholar 

  42. Ursescu, C.: A differentiability dependence on the right-hand side of solutions of ordinary differential equations. Ann. Polon. Math. 31, 191–195 (1975)

    MathSciNet  MATH  Google Scholar 

  43. Varga R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathematics, vol. 27. Springer, Berlin (2000)

    Google Scholar 

  44. Ver Eecke, P.: Applications du calcul différentiel. Presses Universitaires de France, Paris (1985)

    MATH  Google Scholar 

  45. Vidossich, G.: Differentiability of solutions of boundary value problems with respect to data. J. Differ. Equ. 172, 29–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zwirner, G.: Su un problema di valori al contorno per equazioni differenziali ordinarie di ordine n. Rend. Sem. Mat. Univ. Padova 12, 114–122 (1941)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Petruşel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petruşel, A., Rus, I.A. (2014). A Class of Functional-Integral Equations with Applications to a Bilocal Problem. In: Rassias, T., Tóth, L. (eds) Topics in Mathematical Analysis and Applications. Springer Optimization and Its Applications, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-06554-0_28

Download citation

Publish with us

Policies and ethics