Skip to main content

Integer Points in Large Bodies

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 94))

Abstract

For a compact body \(\mathcal{B}\) in three-dimensional Euclidean space with sufficiently smooth boundary, the number \(N(\mathcal{B};t)\) of points with integer coordinates in a linearly enlarged copy \(t\mathcal{B}\) is approximated in first order by the volume \(\mathrm{vol}(\mathcal{B})t^{3}\). This article provides a survey on the state of art of research on the lattice discrepancy \(D(\mathcal{B};t) = N(\mathcal{B};t) -\mathrm{vol}(\mathcal{B})t^{3}\), starting from the classic theory and emphasizing recent developments and advances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the definitions of the order symbols O, Ω, ≪ , \(\asymp \), etc., see, e.g., Krätzel’s book [22].

  2. 2.

    A weaker version of the first asymptotics, with error term \(O(t^{3/2-1/286+\varepsilon })\), has been established by Popov [45].

  3. 3.

    This subsection describes quite recent research by the author which is in course of publication elsewhere [43].

  4. 4.

    Or not, if one has learned the right lesson from the example of the torus.

References

  1. Bateman, P.T.: On the representation of a number as a sum of three squares. Trans. Am. Math. Soc. 71, 70–101 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bentkus, V., Götze, F.: On the lattice point problem for ellipsoids. Acta Arith. 80 (1997), 101–125

    MathSciNet  MATH  Google Scholar 

  3. Burgess, D.: On character sums and L-series, II. Proc. Lond. Math. Soc. 13, 524–536 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burgess, D.: The character sum estimate with r = 3. J. Lond. Math. Soc. 33, 219–226 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chamizo, F.: Lattice points in bodies of revolution. Acta Arith. 85, 265–277 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Chamizo, F., Iwaniec, H.: On the sphere problem. Rev. Mat. Iberoamericana 11, 417–429 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chamizo, F., Cristobal, E., Ubis, A.: Lattice points in rational ellipsoids. J. Math. Anal. Appl. 350, 283–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fricker, F.: Einführung in die Gitterpunktlehre. Birkhäuser, Basel (1982)

    Book  MATH  Google Scholar 

  9. Garcia, V., Nowak, W.G.: A mean-square bound concerning the lattice discrepancy of a torus in \(\mathbb{R}^{3}\). Acta Math. Hung. 128, 106–115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Götze, F.: Lattice point problems and values of quadratic forms. Invent. Math. 157, 195–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, J.: On lattice points in large convex bodies. Acta Arith. 151, 83–108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haberland, K.: Über die Anzahl der Gitterpunkte in konvexen Gebieten. Preprint FSU Jena (1993, unpublished)

    Google Scholar 

  13. Heath-Brown, D.R.: Lattice points in the sphere. In: Györy, K., et al. (eds.) Number Theory in Progress, vol. 2, pp. 883–892. de Gruyter, Berlin (1999)

    Google Scholar 

  14. Hlawka, E.: Über Integrale auf konvexen Körpern I. Monatsh. Math. 54, 1–36 (1950); Über Integrale auf konvexen Körpern II, 54, 81–99 (1950)

    MathSciNet  Google Scholar 

  15. Huxley, M.N.: Area, lattice points, and exponential sums. In: London Mathematical Society Monographs, New Series, vol. 13. Oxford University Press, Oxford (1996)

    Google Scholar 

  16. Huxley, M.N.: Exponential sums and lattice points III. Proc. Lond. Math. Soc. 87(3), 591–609 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iosevich, A., Sawyer, E., Seeger, A.: Mean square discrepancy bounds for the number of lattice points in large convex bodies. J. Anal. Math. 87, 209–230 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ivić, A.: The Laplace transform of the square in the circle and divisor problems. Stud. Sci. Math. Hung. 32, 181–205 (1996)

    MATH  Google Scholar 

  19. Ivić, A., Krätzel, E., Kühleitner, M., Nowak, W.G.: Lattice points in large regions and related arithmetic functions: recent developments in a very classic topic. In: Schwarz, W., Steuding, J. (eds.) Proceedings Conference on Elementary and Analytic Number Theory ELAZ’04, pp. 89–128. Franz Steiner Verlag, Mainz, 24–28 May 2006

    Google Scholar 

  20. Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. Colloquim Publication/American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  21. Jarnik, V.: Über die Mittelwertsätze der Gitterpunktlehre. V. Abh. Cas. mat. fys. 69, 148–174 (1940)

    MathSciNet  Google Scholar 

  22. Krätzel, E.: Lattice Points. VEB Deutscher Verlag der Wissenschaften, Berlin (1988)

    MATH  Google Scholar 

  23. Krätzel, E.: Analytische Funktionen in der Zahlentheorie. Teubner, Stuttgart (2000)

    Book  MATH  Google Scholar 

  24. Krätzel, E.: Lattice points in three-dimensional large convex bodies. Math. Nachr. 212, 77–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krätzel, E.: Lattice points in three-dimensional convex bodies with points of Gaussian curvature zero at the boundary. Monatsh. Math. 137, 197–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krätzel, E.: Lattice points in some special three-dimensional convex bodies with points of Gaussian curvature zero at the boundary. Comment. Math. Univ. Carol. 43, 755–771 (2002)

    MATH  Google Scholar 

  27. Krätzel, E., Nowak, W.G.: Lattice points in large convex bodies. Monatsh. Math. 112, 61–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krätzel, E., Nowak, W.G.: Lattice points in large convex bodies II. Acta Arith. 62, 285–295 (1992)

    MathSciNet  MATH  Google Scholar 

  29. Krätzel, E., Nowak, W.G.: Eine explizite Abschätzung für die Gitterdiskrepanz von Rotationsellipsoiden. Monatsh. Math. 152, 45–61 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krätzel, E., Nowak, W.G.: The lattice discrepancy of bodies bounded by a rotating Lamé’s curve. Monatsh. Math. 154, 145–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Krätzel, E., Nowak, W.G.: The lattice discrepancy of certain three-dimensional bodies. Monatsh. Math. 163, 149–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kühleitner, M., Nowak, W.G.: The lattice point discrepancy of a body of revolution: improving the lower bound by Soundararajan’s method. Arch. Math. (Basel) 83, 208–216 (2004)

    Google Scholar 

  33. Lau, Y.-K.: On the mean square formula of the error term for a class of arithmetical functions. Monatsh. Math. 128, 111–129 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Müller, W.: On the asymptotic behavior of the ideal counting function in quadratic number fields. Monatsh. Math. 108, 301–323 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Müller, W.: Lattice points in large convex bodies. Monatsh. Math. 128, 315–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Müller, W., Nowak, W.G.: Lattice points in planar domains: applications of Huxley’s “Discrete Hardy-Littlewood-Method ”. In: Hlawka, E., Tichy, R.F. (eds.) Number Theoretic Analysis, Vienna 1988–89. Springer Lecture Notes, vol. 1452, pp. 139–164. (1990)

    Google Scholar 

  37. Nowak, W.G.: On the lattice rest of a convex body in \(\mathbb{R}^{s}\), II. Arch. Math. 47, 232–237 (1986)

    Article  MATH  Google Scholar 

  38. Nowak, W.G.: A mean-square bound for the lattice discrepancy of bodies of rotation with flat points on the boundary. Acta Arith. 127, 285–299 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nowak, W.G.: On the lattice discrepancy of bodies of rotation with boundary points of curvature zero. Arch. Math. (Basel) 90, 181–192 (2008)

    Google Scholar 

  40. Nowak, W.G.: The lattice point discrepancy of a torus in \(\mathbb{R}^{3}\). Acta Math. Hung. 120, 179–192 (2008)

    Article  MATH  Google Scholar 

  41. Nowak, W.G.: On the lattice discrepancy of ellipsoids of rotation. Uniform Distrib. Theory 4, 101–114 (2009)

    MATH  Google Scholar 

  42. Nowak, W.G.: Higher order derivative tests for exponential sums incorporating the discrete Hardy-Littlewood method. Acta Math. Hung. 134, 12–28 (2012)

    Article  MATH  Google Scholar 

  43. Nowak, W.G.: Lattice points in bodies of rotation with a dent (submitted for publication)

    Google Scholar 

  44. Peter, M.: Lattice points in convex bodies with planar points on the boundary. Monatsh. Math. 135, 37–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Popov, D.A.: On the number of lattice points in three-dimensional bodies of revolution. Izv. Math. 64, 343–361 (2000) (translation from Izv. RAN Ser. Math. 64, 121–140)

    Google Scholar 

  46. Soundararajan, K.: Omega results for the divisor and circle problems. Int. Math. Res. Not. 36, 1987–1998 (2003)

    Article  MathSciNet  Google Scholar 

  47. Szegö, G.: Beiträge zur Theorie der Laguerreschen Polynome, II, Zahlentheoretische Anwendungen. Math. Z. 25, 388–404 (1926)

    MATH  Google Scholar 

  48. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. (revised by Heath-Brown, D.R.) Oxford University Press, Oxford (1986)

    Google Scholar 

  49. Tsang, K.-M.: Counting lattice points in the sphere. Bull. Lond. Math. Soc. 32, 679–688 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vinogradov, I.M.: On the number of integer points in a sphere (Russian). Izv. Akad. Nauk SSSR Ser. Math. 27, 957–968 (1963)

    MATH  Google Scholar 

Download references

Acknowledgements

This survey article is based on the author’s plenary lecture at the International Conference on Elementary and Analytic Number Theory 2012 (ELAZ’12), held at Schloß Schney near Würzburg, Germany, in August 2012. The author is glad to use this opportunity to thank the organizers of that conference, Mr. and Mrs. Jörn and Rasa Steuding, along with their amazing team, for the wonderful organization and all their kindness and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Georg Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nowak, W.G. (2014). Integer Points in Large Bodies. In: Rassias, T., Tóth, L. (eds) Topics in Mathematical Analysis and Applications. Springer Optimization and Its Applications, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-06554-0_26

Download citation

Publish with us

Policies and ethics