Skip to main content

Molecular Tools to Study Azospirillum sp. and Other Related Plant Growth Promoting Rhizobacteria

  • Chapter
Handbook for Azospirillum
  • 1500 Accesses

Abstract

Molecular methods have been used in the study of Azospirillum and other related PGPRs to carry out gene functional analysis, create gene knockouts, generate genetically engineered strains, and carry out gene expression studies. Genetic transformation has routinely been carried out using conjugation, while chromosomal modifications have been performed using unstable, suicide plasmids, or more stable, broad host-range vectors. Gene expression studies are often carried out using promoter-bound reporter genes; however, quantitative methods such as reverse transcribed polymerase chain reaction can now be used to directly study gene expression. In this chapter we describe the common types of vectors used in Azospirillum, as well as methods for transformation and mutagenesis. We also describe the use of promoter-bound reporter genes and the applications of quantitative RT-PCR for Azospirillum gene expression studies. Methods for the isolation of DNA and RNA from Azospirillum for use in molecular and gene expression studies are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen NL, Hanson RS (1985) Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol 161:955–962

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Arsène F, Katupitiya S, Kennedy IR, Elmerich C (1994) Use of lacZ fusions to study the expression of nif genes of Azospirillum brasilense in association with plants. Mol Plant Microbe Interact 7:748–757

    Article  Google Scholar 

  • Biondi EG, Marini F, Altieri F, Bonzi L, Bazzicalupo M, del Gallo M (2004) Extended phenotype of an mreB-like mutant in Azospirillum brasilense. Microbiology 150:2465–2474

    Article  CAS  PubMed  Google Scholar 

  • Carreno-Lopez R, Campos-Reales N, Elmerich C, Baca BE (2000) Physiological evidence for differentially regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Mol Gen Genet 264:521–530

    Article  CAS  PubMed  Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    PubMed Central  PubMed  Google Scholar 

  • De Zamaroczy M, Paquelin A, Elmerich C (1993) Functional organization of the glnB-glnA cluster of Azospirillum brasilense. J Bacteriol 175:2507–2515

    PubMed Central  PubMed  Google Scholar 

  • Del Gallo MM, Gratani L, Morpurgo G (1985) Mutation in Azospirillum brasilense. In: Klingmuller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 85–97

    Chapter  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77:7347–7351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dreyfus BL, Elmerich C, Dommergues YR (1983) Free living Rhizobium strain able to grow on N2 as the sole nitrogen source. Appl Environ Microbiol 45:711–713

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elmerich C (1983) Azospirillum genetics. In: Puhler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Berlin, pp 367–372

    Chapter  Google Scholar 

  • Elmerich C, Franche C (1982) Azospirillum genetics: plasmids, bacteriophages and chromosome mobilization. In: Klingmuller W (ed) Azospirillum genetics, physiology, ecology. Birkhäuser, Basel, pp 9–17

    Google Scholar 

  • Fani R, Bazzicalupo M, Coianiz P, Polsinelli M (1986) Plasmid transformation of Azospirillum brasilense. FEMS Microbiol Lett 35:23–27

    Article  CAS  Google Scholar 

  • Fani R, Bazzicalupo M, Ricci F, Schipani C, Polsinelli M (1988) A plasmid vector for the selection and study of transcription promoters in Azospirillum brasilense. FEMS Microbiol Lett 50:271–276

    Article  CAS  Google Scholar 

  • Fogher C, Bozouklian H, Bandhari SK, Elmerich C (1985) Constructing of a genomic library of Azospirillum brasilense Sp7 and cloning of the glutamine synthetase gene. In: Klingmuller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin

    Google Scholar 

  • Haas D, Holloway BW (1976) R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol Gen Genet 144:243–251

    Article  CAS  PubMed  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holguin G, Patten CL, Glick BR (1999) Genetics and molecular biology of Azospirillum. Biol Fertil Soils 29:10–23

    Article  CAS  Google Scholar 

  • Hou X, McMillan M, Coumans JVF, Poljak A, Raftery MJ, Pereg L (2014) Cellular responses during morphological transformation in Azospirillum brasilense and its flcA knockout mutant. PLoS One 9(12):e114435. doi:10.1371/journal.pone.0114435

    Article  PubMed Central  PubMed  Google Scholar 

  • Jacob T, Laia M, Ferro J, Ferro MT (2010) Selection and validation of reference genes for gene expression studies by reverse transcription quantitative PCR in Xanthomonas citri subsp. citri during infection of Citrus sinensis. Biotechnol Lett 33:1177–1184

    Article  Google Scholar 

  • Kadouri D, Burdman S, Jurkevitch E, Okon Y (2002) Identification and isolation of genes involved in poly(beta-Hydroxybutyrate) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Appl Environ Microbiol 68:2943–2949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y (2003) Poly β-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Arch Microbiol 180:309–318

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T et al (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17(1):37–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katupitiya S, New PB, Elmerich C, Kennedy IR (1995) Improved N2 fixation in 2,4-D treated wheat roots associated with Azospirillum lipoferum: studies of colonization using reporter genes. Soil Biol Biochem 27:447–452

    Article  CAS  Google Scholar 

  • Kaur S, Mishra M, Tripathi A (2009) Regulation of expression and biochemical characterization of a b-class carbonic anhydrase from the plant growth promoting rhizobacterium, Azospirillum brasilense Sp7. FEMS Microbiol Lett 299:149–158

    Article  CAS  PubMed  Google Scholar 

  • Knauf VC, Nester EW (1982) Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8:45–54

    Article  CAS  PubMed  Google Scholar 

  • Kokotek W, Lotz W (1989) Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene 84:467–471

    Article  CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range vector pBBR1MCS carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Rai A, Mishra M, Shukla M, Singh P, Tripathi A (2012) RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7. Microbiology 158:2891–2902

    Article  CAS  PubMed  Google Scholar 

  • Liang YY, Kaminski PA, Elmerich C (1991) Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia. Mol Microbiol 5:2735–2744

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tan Y, Yang X, Chen X, Li F (2013) Evaluation of Clostridium ljungdahlii DSM 13528 reference genes in gene expression studies by qRT-PCR. J Biosci Bioeng 116(4):460–464

    Article  CAS  PubMed  Google Scholar 

  • McMillan M, Pereg L (2014) Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense. PLoS One 9(5):e98162. doi:10.1371/journal.pone.0098162

    Article  PubMed Central  PubMed  Google Scholar 

  • Michiels K, Vanstockem M, Vanderleyden J, Van Gool A (1985) Stability of broad host range plasmids in Azospirillum. Cloning of a 5.9 KBP plasmid from A. brasilense RO7. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 63–73

    Chapter  Google Scholar 

  • Milcamps A, Van Dommelen A, Stigter J, Vanderleyden J, de Bruijn FJ (1996) The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis. Can J Microbiol 42:467–478

    Article  CAS  PubMed  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Nielsen K, Boye M (2005) Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions. Appl Environ Microbiol 71:2949–2954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedrosa FO, Yates MG (1984) Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntr (gln) type gene products. FEMS Microbiol Lett 23:95–101

    Article  CAS  Google Scholar 

  • Pereg Gerk L (2004) Expression of flcA, a gene regulating differentiation and plant interaction in Azospirillum. Soil Biol Biochem 36:1245–1252

    Article  CAS  Google Scholar 

  • Pereg Gerk L, Paquelin A, Gounon P, Kennedy IR, Elmerich C (1998) A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonisation by Azospirillum brasilense Sp7. Mol Plant Microbe Interact 11:177–187

    Article  CAS  PubMed  Google Scholar 

  • Pereg Gerk L, Gilchrist K, Kennedy IR (2000) Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations. Appl Environ Microbiol 66:2175–2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaffl M, Tichopad A, Prgomet C, Neuvians T (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21

    Article  CAS  PubMed  Google Scholar 

  • Reeve WG, Tiwari RP, Worsley PS, Dilworth MJ, Glenn AR, Howieson JG (1999) Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology 145:1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Revers LF, Pereira Passaglia LM, Marchal K, Frazzon J, Blaha CG, Vanderleyden J, Schrank IS (2000) Characterization of an Azospirillum brasilense Tn5 mutant with enhanced N2 fixation: the effect of ORF280 on nifH expression. FEMS Microbiol Lett 183:23–29

    Article  CAS  PubMed  Google Scholar 

  • Reznikoff WS (1982) Tn5 transposition and its regulation. Cell 31:307–308

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Mendoza A, Cruz MA, Holguin G, Glick BR, Bashan Y (2006) Pleiotropic physiological effects in the plant growth-promoting bacterium Azospirillum brasilense following chromosomal labeling in the clpX gene. FEMS Microbiol Ecol 57:217–225

    Article  CAS  PubMed  Google Scholar 

  • Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34:261–279

    Google Scholar 

  • Rothballer M, Schmid M, Fekete A, Hartmann A (2005) Comparative in situ analysis of ipdC–gfp mut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol 7:1839–1846

    Article  CAS  PubMed  Google Scholar 

  • Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H (2003) Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52:403–408

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj G, Iyer VN (1983) Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol 156:1292–1300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  • Takle G, Toth I, Brurberg M (2007) Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biol 7:50

    Article  PubMed Central  PubMed  Google Scholar 

  • Theis T, Skurray RA, Brown MH (2007) Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR. J Microbiol Methods 70:355–362

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Okon Y, Burdman S (2006) cDNA-AFLP reveals differentially expressed genes related to cell aggregation of Azospirillum brasilense. FEMS Microbiol Lett 265:186–194

    Article  CAS  PubMed  Google Scholar 

  • Van Rhijn P, Vanstockem M, Vanderleyden J, De Mot R (1990) Isolation of behavioural mutants of Azospirillum brasilense by using Tn5 lacZ. Appl Environ Microbiol 56:990–996

    PubMed Central  PubMed  Google Scholar 

  • Vande Brock A, Keijers V, Vanderleyden J (1996) Effect of oxygen on the free-living nitrogen fixation activity and expression of the Azospirillum brasilense nifH gene in various plant-associated diazotrophs. Symbiosis 21:25–40

    Google Scholar 

  • Vande Broek A, van Gool A, Vanderleyden J (1989) Electroporation of Azospirillum brasilense with plasmid DNA. FEMS Microbiol Lett 61:177–182

    Article  CAS  Google Scholar 

  • Vande Broek A, Michiels J, DeFaria SM, Milcamps A, Vanderleyden J (1992) Transcription of the Azospirillum brasilense nifH gene is positively regulated by NifA and NtrA and is negatively controlled by the cellular nitrogen status. Mol Gen Genet 232(2):279–283

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanstockem M, Michiels K, Vanderleyden J, Van Gool A (1987) Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiol 53:410–415

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vial L, Cuny C, Gluchoff-Fiasson K, Comte G et al (2006) N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule. FEMS Microbiol Ecol 58:155–168

    Article  CAS  PubMed  Google Scholar 

  • Vieille C, Elmerich C (1992) Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutrophus phbB and to Rhizobium meliloti nodG. Mol Gen Genet 231:375–384

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski-Dye F, Borziak K, Khalsa-Moyers G et al (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao W, Li Y, Gao P et al (2011) Validation of reference genes for real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang. J Ind Microbiol Biotechnol 38:1279–1286

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lily Pereg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereg, L., McMillan, M. (2015). Molecular Tools to Study Azospirillum sp. and Other Related Plant Growth Promoting Rhizobacteria. In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_4

Download citation

Publish with us

Policies and ethics