Skip to main content

Inoculant Preparation and Formulations for Azospirillum spp.

  • Chapter
Book cover Handbook for Azospirillum

Abstract

In general, shortly after suspensions of Azospirillum spp. are inoculated into soil, seed surface, or root surfaces without a proper carrier, the bacteria population declines rapidly. This phenomenon, combined with poor production of bacterial biomass, makes difficult to sustain activity in the rhizosphere, and the physiological state of Azospirillum spp. at application time can prevent the buildup of a sufficiently large bacterial population in the rhizosphere. Consequently, a major role of formulation of inoculants is to provide a more suitable microenvironment, combined with physical protection for a prolonged period to prevent a rapid decline of introduced Azospirillum spp. Inoculants for field use have to be designed to provide a dependable source of bacteria that survives in the soil and become available to crops, when needed. This chapter provides technical details on production of several formulations proven useful for Azospirillum spp. from propagation of the bacterium in culture medium to final formulation for the field, and the industrial considerations involved in the entire process of inoculant production. These include: media for massive propagation, techniques for useful formulation, mode of application out of the laboratory setting, and industrial consideration regarding production of commercial inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albareda M, Rodriguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculant: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan Y (1986a) Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth. Appl Environ Microbiol 51:1089–1098

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan Y (1986b) Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biol Biochem 18:297–301

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246–256

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Gonzalez LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51:262–266

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1985) An improved selection technique and medium for the isolation and enumeration of Azospirillum brasilense. Can J Microbiol 31:947–952

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1987) Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. J Gen Microbiol 133:3473–3480

    Google Scholar 

  • Bashan Y, Mitiku G, Ziv-Vecht O, Levanony H (1991) Estimation of minimal numbers of Azospirillum brasilense using time-limited liquid enrichment combined with enzyme-linked immunosorbent assay. Soil Biol Biochem 23:135–138

    Article  Google Scholar 

  • Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC Press, Boca Raton, pp 331–345

    Google Scholar 

  • Bashan Y, Hernandez J-P, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carrier for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368

    Article  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Trejo A, de-Bashan LE (2011) Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biol Fertil Soils 47:963–969

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Cong PT, Dung TD, Hien TM, Hien NT, Choudhury ATMA, Kecskés KL, Kennedy IR (2009) Inoculant plant growth-promoting microorganisms enhance utilisation of urea-N and grain yield of paddy rice in southern Vietnam. Eur J Soil Biol 45:52–61

    Article  CAS  Google Scholar 

  • Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93:2669–2680

    Article  CAS  PubMed  Google Scholar 

  • Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  PubMed  Google Scholar 

  • Deaker R, Kecskés ML, Rose MT, Amprayn K, Ganisan K, Tran TK C, Vu TN, Phan TC, Nguyen T Hien, Kennedy IR (2011) Practical methods for the quality control of inoculant biofertilisers. ACIAR monograph series no. 147, Canberra, Australia, 101p

    Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Zorita M, Fernández-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11

    Article  Google Scholar 

  • Diouf D, Forestier S, Neyra M, Lesueur D (2003) Optimisation of inoculation of Leucaena leucocephala and Acacia mangium with Rhizobium under greenhouse conditions. Ann For Sci 60:379–384

    Article  Google Scholar 

  • Döbereiner J, Day JM (1976) Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. In: Newton WE, Nyman CJ (eds) Proceedings of the 1st international symposium on nitrogen fixation, vol 2. Washington State University Press, Pullman, pp 518–538

    Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • Gamal-Eldin H, Elbanna K (2011) Field evidence for the potential of Rhodobacter capsulatus as biofertilizer for flooded rice. Curr Microbiol 62:391–395

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Bashan Y (2009) Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB)-special issue. Eur J Soil Biol 45:1–2

    Article  Google Scholar 

  • Jha CK, Saraf M (2012) Evaluation of multispecies plant-growth-promoting consortia for the growth promotion of Jatropha curcas L. J Plant Growth Regul 31:588–598

    Article  CAS  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    Article  CAS  PubMed  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Reddy MS, Kloepper JW (2003) Amendment of muskmelon and watermelon transplant media with plant growth-promoting rhizobacteria: effect on seedling quality, disease and nematode resistance. Hort Technology 13:476–482

    Google Scholar 

  • Levanony H, Bashan Y, Kahana ZE (1987) Enzyme-linked immunosorbent assay for specific identification and enumeration of Azospirillum brasilense Cd. in cereal roots. Appl Environ Microbiol 53:358–364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54:83–89

    Article  Google Scholar 

  • Manjula K, Podile AR (2001) Chitin-supplemented formulations improve bicontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Can J Microbiol 47:618–625

    Article  CAS  PubMed  Google Scholar 

  • Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871–879

    Article  Google Scholar 

  • Meyer SLF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao W (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combination, against Meloidogyne incognita on bell pepper. Nematropica 31:75–86

    Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836

    Google Scholar 

  • Rodriguez-Caceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991

    Google Scholar 

  • Schoebitz M, Simonin H, Poncelet D (2012) Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads. J Microencapsul 29:532–538

    Article  CAS  PubMed  Google Scholar 

  • Schoebitz M, López MD, Roldan A (2013) Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron Sustain Dev 33:751–765

    Article  CAS  Google Scholar 

  • Schulz TJ, Thelen KD (2008) Soybean seed inoculant and fungicidal seed treatment effects on soybean. Crop Sci 48:1975–1983

    Article  CAS  Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR proceedings 109e, pp 52–66

    Google Scholar 

  • Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16SrRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Syst Appl Microbiol 24:83–97

    Article  CAS  PubMed  Google Scholar 

  • Taurian T et al (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431

    Article  CAS  Google Scholar 

  • Trejo A, de-Bashan LE, Hartmann A, Hernandez JP, Rothballer M, Schmid M, Bashan Y (2012) Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ Exp Bot 75:65–73

    Article  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (Vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  CAS  PubMed  Google Scholar 

  • Zohar-Perez C, Chernin L, Chet I, Nussinovitch A (2003) Structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against UVC radiation. Radiat Res 160:198–204

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoav Bashan .

Editor information

Editors and Affiliations

Additional information

Dedication:

This review is dedicated to the memory of the Israeli soil microbiologist Prof. Yigal Henis (1926–2010) of the Faculty of Agriculture, The Hebrew University of Jerusalem in Rehovot, Israel, one of the pioneers of studies of inoculants in Israel.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bashan, Y., de-Bashan, L.E. (2015). Inoculant Preparation and Formulations for Azospirillum spp.. In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_26

Download citation

Publish with us

Policies and ethics