Skip to main content

Azospirillum spp. and Related PGPRs Inocula Use in Intensive Agriculture

  • Chapter

Abstract

From the beginning of plant domestication, extensive farming has been the main strategy adopted by agriculture to produce large amounts of food. However, plant production in a continuously deteriorating environment and an exponentially growing human population are important factors that challenge agriculture nowadays. Moreover, agricultural lands are currently expanded to marginal, arid, or semiarid regions where crops are exposed to abiotic stresses as drought and salinity, this last negative factor aggravated by different anthropogenic actions. In addition, contemporary society requires from agriculture to provide food products with high market and nutritional qualities as fruits and vegetables, which should also be free of agrochemicals. In consequence, it is imperative to develop friendly, non-contaminant, sustainable, and energy-saving plant production strategies. In this regard, vegetable production by intensive farming in controlled environments is continuously expanding. On the other hand, recent reports show that plant inoculation with plant-growth promoting rhizobacteria (PGPR) could improve vegetable quality and yield under abiotic stresses, and to reduce the pressure that current agriculture exerts on the environment. Within this context, our main purpose was to describe a number of techniques aimed to study the plausible beneficial effects of Azospirillum and related PGPR inoculation on vegetable growth and nutritional quality, with emphasis on the promotion of antioxidant activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adesemoye AO, Tobert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Tobert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • AOSA (1983) Seed vigour testing handbook. Contribution no 32 to the handbook on seed testing. Association of Official Seed Analysts, Washington, DC

    Google Scholar 

  • Argoti JC, Salido S, Linares-Palomino PJ, Ramírez B, Insuasty B, Altarejos J (2011) Antioxidant activity and free radical scavenging capacity of a selection of wild-growing Colombian plants. J Sci Food Agric 91(13):2399–2406

    Article  CAS  PubMed  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109(1):8–14

    Article  CAS  Google Scholar 

  • Barassi CA, Sueldo RJ, Creus CM, Carrozzi LE, Casanovas EM, Pereyra MA (2007) Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production. Dyn Soil Dyn Plant 1(2):68–82

    Google Scholar 

  • Barassi CA, Sueldo RJ, Creus CM, Carrozzi L, Casanovas EM, Pereyra MA (2008) Potencialidad de Azospirillum en optimizar el crecimiento vegetal bajo condiciones adversas. In: Cassán F, García Salamone I (eds) International workshop in Azospirillum: cell physiology, plant response and agronomic research in Argentine. SMAyA, AAM, chap 3, pp 49–58. ISBN: 978-987-98475-8-9

    Google Scholar 

  • Barrow JR, Lucero ME, Reyes-Vera I, Havstad KM (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:69–73. doi:10.4161/cib.1.1.6238

    Article  PubMed Central  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth: a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances (1997–2003). Can J Microbiol 50: 521–577

    Article  CAS  PubMed  Google Scholar 

  • Bennett AJ, Whipps JM (2008) Dual application of beneficial microorganisms to seed during drum priming. Appl Soil Ecol 38:83–89. doi:10.1016/j.apsoil.2007.08.001

    Article  Google Scholar 

  • Berg G, Zachow C, Müller H, Philipps J, Tilcher R (2013) Next-generation Bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656. doi:10.3390/ agronomy3040648

    Article  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350. doi:10.1007/s11274-011-0979-9

    Article  CAS  PubMed  Google Scholar 

  • Bruno RS, Leonard SW, Atkinson J, Montine TJ, Ramakrishnan R, Bray TM, Traber MG (2006) Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic Biol Med 40(4):689–697

    Article  CAS  PubMed  Google Scholar 

  • Cappellari LR, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22

    Article  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ (2000) Azospirillum inoculation of maize seed during imbibition. Cereal Res Commun 28(1–2):25–32

    Google Scholar 

  • Coleman-Derr D, Tringe SG (2014) Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Front Microbiol 5:283. doi:10.3389/fmicb. 2014.00283

    Article  PubMed Central  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1996) Azospirillum inoculation in pregeminating seeds. Can J Microbiol 42:83–86

    Article  CAS  Google Scholar 

  • del Amor FM, Serrano-Martínez A, Fortea MI, Legua P, Núñez-Delicado E (2008) The effect of plant-associative bacteria (Azospirillum and Pantoea) on the fruit quality of sweet pepper under limited nitrogen supply. Sci Hortic 117(3):191–196

    Article  Google Scholar 

  • Drewnowski A (2010) The nutrient rich foods index helps to identify healthy, affordable foods. Am J Clin Nutr 91(4):1095–1101

    Article  Google Scholar 

  • East R (2013) Microbiome: soil science comes to life. Nature 501(7468):18–19. doi:10.1038/ 501S18a

    Article  Google Scholar 

  • Editorial (2010) How to feed a hungry world. Nature 466:531–532. doi:10.1038/466531a

    Article  Google Scholar 

  • Eraslan FA, Savasturk I, Gunes OA (2007) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci Hortic 114:5–10

    Article  CAS  Google Scholar 

  • Fasciglione G, Casanovas EM, Yommi A, Sueldo RJ, Barassi CA (2012) Azospirillum improves lettuce growth and transplant under saline conditions. J Sci Food Agric 92:2518–2523

    Article  CAS  PubMed  Google Scholar 

  • Flores P, Fenoll J, Hellin P, Aparicio-Tejo P (2010) Isotopic evidence of significant assimilation of atmospheric-derived nitrogen fixed by Azospirillum brasilense co-inoculated with phosphate-solubilising Pantoea dispersa in pepper seedling. Appl Soil Ecol 46(3):335–340

    Article  Google Scholar 

  • Gleick PH (1993) Water in crisis: a guide to the World’s fresh water resources. Oxford University Press, New York

    Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240. doi:10.1007/s11274-010-0572-577

    Article  Google Scholar 

  • Hacisevki A (2009) An overview of ascorbic acid biochemistry. J Fac Pharm Ankara 38:233–255

    CAS  Google Scholar 

  • Hampton JG (1992) Prolonging seed quality. In: Proceedings of the 4th Australian seeds research conference, pp 181–194

    Google Scholar 

  • Hampton JG, TeKrony DM (eds) (1995) Handbook of vigour test methods, vol 3. ISTA Vigour test Committee, Zurich, p 117

    Google Scholar 

  • International Society for Horticultural Science (ISHS) (2012) Harvesting the sun. A profile of world horticulture. Scripta horticulturae, no 14. ISHS, Belgium. ISBN 978 90 6605 704 3

    Google Scholar 

  • ISTA (2014) International rules for seed testing. Seed Science and Technology, Edinburgh, 147

    Google Scholar 

  • Jain A, Singh A, Chaudhary A, Singh S, Singh HB (2014) Modulation of nutritional and antioxidant potential of seeds and pericarp of pea pods treated with microbial consortium. Food Res Int 64:275–282

    Article  CAS  Google Scholar 

  • Jeremy JY, Shukla N, Muzaffar S, Handley A, Angelini GD (2004) Reactive oxygen species, vascular disease and cardiovascular surgery. Curr Vasc Pharmacol 2:229–236

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Fonseca J, Choi J, Kubota C, Kwon DY (2008) Salt irrigation water affects the nutritional an visual properties of romaine lettuce. J Agric Food Chem 56:3772–3776

    Article  CAS  PubMed  Google Scholar 

  • Köberl M, Müller H, Ramadan EM, Berg G (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6:e24452. doi:10.1371/journal.pone.0024452

    Article  PubMed Central  PubMed  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2–3):245–252

    Article  CAS  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31:91–100

    Article  Google Scholar 

  • Lamsal K, Kim SW, Kim YS, Lee YS (2013) Biocontrol of late blight and plant growth promotion in tomato using rhizobacterial isolates. J Microbiol Biotechnol 2(7):897–904

    Article  Google Scholar 

  • Lantican MA, Pingali PL, Rajaram S (2003) Is research on marginal lands catching up? The case of unfavourable wheat growing environments. Agric Econ 29:353–361. doi:10.1111/j.1574-0862.2003.tb00171.x

    Article  Google Scholar 

  • Larson C (2013) Losing arable land, China faces stark choice: adapt or go hungry. Science 339:644–645. doi:10.1126/science.339.6120.644

    Article  CAS  PubMed  Google Scholar 

  • Le Marchand L (2002) Cancer preventive effects of flavonoids—a review. Biomed Pharmacother 56:296–301

    Article  PubMed  Google Scholar 

  • Lebeis SL (2014) The potential for give and take in plant—microbiome relationships. Front Plant Sci 5:287. doi:10.3389/fpls.2014.00287

    Article  PubMed Central  PubMed  Google Scholar 

  • Leipner J, Fracheboud Y, Stamp P (1997) Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant Cell Environ 20:366–372

    Article  CAS  Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. ScientificWorldJournal 2012:1–12. doi:10.1100/2012/491206, Article ID 491206

    Article  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479. doi:10.1371/journal.pone.0048479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marco GJA (1968) A rapid method for evaluation of antioxidants. J Am Oil Chem Soc 45:594–598

    Article  CAS  Google Scholar 

  • Miller HE (1971) A simplified method for the evaluation of antioxidants. J Am Oil Chem Soc 48:91

    Article  CAS  Google Scholar 

  • Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A (2013) Advances in elucidating beneficial interactions between plants, soil and bacteria. Adv Agron 121:381–445

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 21(7):1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir A, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  PubMed  Google Scholar 

  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting Rhizobacteria NRRL B-30488. J Agric Food Chem 56(12):4474–4481. doi:10.1021/jf073258i

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 21:3–16

    Article  CAS  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1976) Factors affecting growth and nitrogen fixation of Spirillum lipoferum. J Bacteriol 127:1248–1254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oustan S, Jafarzadeh A, Aliasgharzad N (2007) Electrical conductivity as a salient factor in saline-sodic soils of Tabriz plain. Bioclimatology and natural hazards. In: International scientific conference, Pol’ana nad Detvou, Slovakia. http://cbks.cz; consulta: septiembre de 2009

  • Park J-W, Balaraju K, Kim J-W, Lee S-W, Park K (2013) Systemic resistance and growth promotion of chili pepper induced by an antibiotic producing Bacillus vallismortis strain BS07. Biol Control 65(2):246–257

    Article  Google Scholar 

  • Postgate JR (1969) Viable counts and viability. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 1. Academic, New York, pp 611–618

    Google Scholar 

  • Ramos-Solano B, Garcia-Villaraco A, Gutierrez-Mañero FJ, Lucas JA, Bonilla A, Garcia Seco D (2014) Annual changes in bioactive contents and production in field-grown blackberry after inoculation with Pseudomonas fluorescens. Plant Physiol Biochem 74:1–8

    Article  CAS  PubMed  Google Scholar 

  • Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82:53–113

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Cáceres E (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44(4):990–991

    Google Scholar 

  • Romero AM, Vega D, Correa OS (2014) Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Appl Soil Ecol 82:38–43

    Article  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganism: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singleton VL, Rossi JA Jr. (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer J Enol Viticult 16:144–158

    Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320

    Article  CAS  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209. doi:10.1186/gb-2013-14-6-209

    Article  PubMed Central  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (1998) Biological analytical manual (BAM), 8th ed Revision A

    Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Vicente AR, Manganaris GA, Sozzi GO, Crisosto CH (2014) Nutritional quality of fruit and vegetables. In: Florkowski, Shewfeit, Brueckner, Prussia (eds) Postharvest handling: a systems approach, 2nd edn. Academic, Elsevier, Oxford, pp 57–106, chap 5

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi:10.1016/j.tplants.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: application and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zhilong B, Tadashi I, Shinohara Y (2004) Effects of sodium sulfate and sodium bicarbonate on the growth, gas exchange and mineral composition of lettuce. Sci Hortic 99:215–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elda Mabel Casanovas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casanovas, E.M., Fasciglione, G., Barassi, C.A. (2015). Azospirillum spp. and Related PGPRs Inocula Use in Intensive Agriculture. In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_25

Download citation

Publish with us

Policies and ethics