Skip to main content

Interaction of Azospirillum and Mycorrhiza

  • Chapter
Handbook for Azospirillum

Abstract

The AM fungi interact with Azospirillum directly by providing niche and/or habitat or indirectly by modifying host plant morphophysiology. This communication in soil can be beneficial for both the microorganisms and the host plant. The Azospirillum inoculation is more successful and more profitable when other microorganisms are co-inoculated with Azospirillum. The inoculation consortia apparently work better when VAM fungi are incorporated. So far, observational techniques and morphophysiological analysis techniques have been developed but nonspecifically for this microbial interaction. New co-inoculation methods and polymicrobial formulations with stable, effective, multifunctional, and eco-friendly characteristics are technically demanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular arbuscular mycorrhizal fungus. (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401–409

    Article  Google Scholar 

  • Akiyama K, Hayashi H (2006) Plant and fungal signalling molecules in the arbuscular mycorrhizal symbiosis. Tanpakushitsu Kakusan Koso 51:1024–1029

    CAS  PubMed  Google Scholar 

  • Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38(5):1008–1014

    Article  CAS  Google Scholar 

  • Aliasgharzad N, Reza M, Neyshabouri Salimi G (2006) Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 19:324–328

    Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GL (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192(1):71–79

    Article  CAS  Google Scholar 

  • Andre S, Galiana A, Le Roux C, Prin Y, Neyra M, Duponnois R (2005) Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth. Mycorrhiza 15:357–364

    Article  CAS  PubMed  Google Scholar 

  • Arora N, Khare E, Maheshwari D (2011) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18. Springer, Berlin, pp 97–116

    Chapter  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Avis TJ, Gravel V, Autoun H, Tweddel RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Azcon R, Barea JM, Hayman DS (1976) Utilization of rock phosphate in alkaline soil by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biol Biochem 81:135–138

    Article  Google Scholar 

  • Azcon C (2009) Mycorrhizas functional processes and ecological impact. Berlin: Springer

    Google Scholar 

  • Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) (2009) Mycorrhizas functional processes and ecological impact. Springer, Berlin

    Google Scholar 

  • Babu RS, Sankaranarayanan C, Jothi G (1998) Management of Pratylenchuszeae on maize by biofertilizers and VAM. Indian J Nematol 28:77–80

    Google Scholar 

  • Barea JM (1997) Mycorrhiza-bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth promoting rhizobacteria. OECD Press, Paris, pp 150–158

    Google Scholar 

  • Barea JM, Azcon-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. In: Brady NC (ed) Advances in agronomy. Academic, New York, pp 1–54

    Google Scholar 

  • Barea JM, Bonis AF, Olivares J (1983) Interactions between Azospirillum and VA mycorrhiza and their effects on growth and nutrition of maize and ryegrass. Soil Biol Biochem 15:705–709

    Article  Google Scholar 

  • Barea JM, Rade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81(1–4):343–351

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Varma A, Buscot F (eds) Microorganisms in soils: roles in genesis and functions, vol 3. Springer, Berlin, pp 195–212

    Chapter  Google Scholar 

  • Bashan Y, Holguin G (1997a) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997b) Short- and medium term avenues for Azospirillum inoculation. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria–present status and future prospects. Faculty of Agriculture, Hokkaido University, Sapporo, Japan, pp 130–149

    Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Trejo A, de-Bashan LE (2011) Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biol Fertil Soils 47:963–969

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives. Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Bauer JT, Kleczewski NM, Bever JD, Clay K, Reynolds HL (2012) Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities. Oecologia 170:1089–1098

    Article  PubMed  Google Scholar 

  • Belimov AA, Serebrennikova NV, Stepanok VV (1999) Interaction of associative bacteria and an endomycorrhizal fungus with barley upon dual inoculation. Microbiology 68:104–108

    CAS  Google Scholar 

  • Bellone C, Carrizo de Bellone S (2012) Interaction of Azospirillum brasilense and Glomus intrarradix in sugar cane roots. Indian J Microbiol 52(1):70–75

    Article  PubMed Central  PubMed  Google Scholar 

  • Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser, Berlin, pp 117–131

    Chapter  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Stafford AE (1985) Glycine–GlomusRhizobium symbiosis. II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol 79:1054–1058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45:39–49

    Article  CAS  PubMed  Google Scholar 

  • Biró B, Köves-Péchy K, Szili-Kovács T, Szegi J (1993) Effect of fertilizer on spontaneous Rhizobium infection in Hungarian soils. In: Szabolcs I (ed) Soil resilience and sustainable land use. Agrokem Talajtan 42:207–212

    Google Scholar 

  • Biró B, Köves-Péchy K, Vörös I, Takács T, Eggenberger P, Strasser RJ (2000) Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol 15:159–168

    Article  Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117

    Article  Google Scholar 

  • Brown ME, Carr GR (1984) Interaction between Azotobacter chroococcum and vesicular-arbuscular mycorrhiza and their elects on plant growth. J Appl Bacteriol 56:429–437

    Article  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30:343–350

    Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J et al (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282(1–2):209–225

    Article  CAS  Google Scholar 

  • Champawat RS (1990) Response of chickpea (Cicerarietinum) to Rhizobium and vesicular arbuscular mycorrhiza dual inoculation. Acta Microbiol Pol 39:163–169

    Google Scholar 

  • Chang TT, Li CY (1998) Weathering of limestone, marble, and calcium phosphate by ectomycorrhizal fungal and associated microorganisms. Taiwan J For Sci 13:85–90

    Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • Dahm H, Strzelczyk E, Ciesielska A, Redlak K (1998) The effect of ectomycorrhizal fungi and bacteria on pine seedlings. Acta Mycol 33:25–36

    Article  Google Scholar 

  • Dodd IC, Ruiz-Lozano JM (2012) Microbial enhancement of crop resource use efficiency. Curr Opin Biotechnol 23:236–242

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Nuñez JA, Martin A, Anriquez A, Albanesi A (2012) The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza 22(6):429–436

    Article  Google Scholar 

  • Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas fir with ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare root forest nurseries. Plant Soil 138:169–176

    Article  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36(3):232–244

    Article  PubMed  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extrarradical mycelium. J Exp Bot 59:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155(2):293–300

    Article  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent Pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils 32:259–264

    Article  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and growth yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida and Trichoderma atraviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Hata S, Kobae Y, Banba M (2010) Interactions between plants and arbuscular mycorrhizal fungi. In: Kwang WJ (ed) International review of cell and molecular biology, vol 281. Academic, Burlington, pp 1–48

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hiltner A (1895) Zurfrage der stickstoffernahrung in Pflanzen. Landw Vers Stat 51:92–97

    Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Jeffries P, Dodd CJ (1991) The use of mycorrhizal inoculants in forestry and agriculture. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology, vol 1, Soil and plants. Marcel Dekker, New York, pp 77–129

    Google Scholar 

  • Joe MM, Jaleel CA, Sivakumar PK, Zhao CX, Karthikeyan B (2009) Co-aggregation in Azospirillum brasilense MTCC-125 with other PGPR strains: effect of physical and chemical factors and stress endurance ability. J Taiwan Inst Chem Eng 40:491–499

    Article  CAS  Google Scholar 

  • Juge C, Prévost D, Bertrand A, Bipfubusa M, Chalifourb F-P (2012) Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Appl Soil Ecol 61:147–157

    Article  Google Scholar 

  • Kavitha K, Meenakumari KS, Sivaprasad P (2003) Effect of dual inoculation of native arbuscular mycorrhizal fungi and Azospirillum on suppression of damping off in chilli. Indian Phytopathol 56:112–113

    Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth-promoting rhizobacteria and sustainable agriculture. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 133–160

    Chapter  Google Scholar 

  • Kosuta S (2003) Diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Ravnskov S, Xie G, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. Bio Control 52(6):863–875

    Google Scholar 

  • Lilly SS, Santhanakrishnan P (1999) Granulation of VA mycorrhizal inoculum. Madras Agric J 86:256–259

    Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Scientific World Journal. doi:10.1100/2012/491206

    PubMed Central  PubMed  Google Scholar 

  • Marschner P, Timonen S (2006) Bacterial community composition and activity in rhizosphere of roots colonized by arbuscular mycorrhizal fungi. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 139–154

    Chapter  Google Scholar 

  • Miyauchi MYH, Lima DS, Nogueira MA, Lovato GM, Murate LS, Cruz MF, Ferreira JM, Zangaro W, Andrade G (2008) Interactions between diazotrophic bacteria and mycorrhizal fungus in maize genotypes. Sci Agric 65(5):525–531

    Article  Google Scholar 

  • Mogge B, Loferer C, Agerer R, Hutzler P, Hartmann A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–279

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426

    CAS  Google Scholar 

  • Nath DJ, Bhattacharjee RN, Devi MR, Patgiri SR (1997) Widespread occurrence of Azospirillum spp. in the North-Eastern region of India. Adv Plant Sci 10:189–194

    Google Scholar 

  • Olsson PA, Bååth E, Jakobsen I, Söderström B (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol Biochem 28(4–5):463–470

    Article  CAS  Google Scholar 

  • Orozco-Jaramillo C, Martinez-Nieto P (2009) Evaluation of inoculation with asymbiotic nitrogen-fixing microorganisms isolated from rhizosphere of Pinus patula in Colombia. Bosque 30(2):70–77

    Google Scholar 

  • Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Dreyfus B, Duponnois R (2009) Responses of Pinus halepensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil 320:169–179

    Article  CAS  Google Scholar 

  • Pacovsky RS, Fuller G (1985) Influence of soil on the interactions between endomycorrhizae and Azospirillum in sorghum. Soil Biol Biochem 17(4):525–531

    Article  Google Scholar 

  • Paula MA, Urquiaga S, Siqueira JO, Döbereiner J (1992) Synergistic effects of vesicular-mycorrhizal fungi and diazotrophic bacteria on nutrition and growth of sweet potato (Ipomea batatas). Biol Fertil Soils 14:61–66

    Article  CAS  Google Scholar 

  • Raimam MP, Albino U, Cruz MF, Lovato GM, Spago F, Ferracin TP, Lima DS, Goulart T, Bernardi CM, Miyauchi M, Nogueira MA, Andrade G (2007) Interaction among free-living N-fixing bacteria isolated from Drosera villosa var. villosa and AM fungi (Glomus clarum) in rice (Oryza sativa). Appl Soil Ecol 35:25–34

    Article  Google Scholar 

  • Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. In: Sariaslani S, Gadd GM (ed) Advances in applied microbiology, Elsevier 82:53–113

    Google Scholar 

  • Rincón A, Ruiz-Díez B, García-Fraile S, Lucas-García JA, Fernández-Pascual M, Pueyo JJ, De Felipe MR (2005) Colonization of Pinus halepensis roots by Pseudomonas fluorescens and interaction with the ectomycorrhizal fungus Suillus granulatus. FEMS Microbiol Ecol 51:303–311

    Article  PubMed  Google Scholar 

  • Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GE, Downie JA, Etzler ME (2013) Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. Plant Physiol 161:556–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120

    Article  CAS  Google Scholar 

  • Ruiz-Sánchez M, Armada E, Muñoz Y, Garcia de Salamone IE, Aroca R, Ruiz-Lozano JM et al (2011) Azospirillum and arbuscular mycorrhizal colonization enhanced rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037

    Article  PubMed  Google Scholar 

  • Sánchez-Diaz M, Pardo M, Antolin M, Pena J, Aguirreola J (1990) Effect of water stress on photosynthetic activity in the MedicagoRhizobiumGlomus symbiosis. Plant Sci 71:215–221

    Article  Google Scholar 

  • Saravanan RS, Natarajan K (1996) Effect of Pisolithus tinctorius on the nodulation and nitrogen fixing potential of Acacia nilotica seedlings. Kavaka 24:41–49

    Google Scholar 

  • Saravanan RS, Natarajan K (2000) Effect of ecto- and endomycorrhizal fungi along with Bradyrhizobium sp. on the growth and nitrogen fixation in Acacia nilotica seedlings in the nursery. J Trop For Sci 12:348–356

    Google Scholar 

  • Seneviratne G, Zavahir J, Bandara W, Weerasekara M (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    Article  CAS  Google Scholar 

  • Sieberer BJ, Chabaud M, Timmers AC, Monin A, Fournier J, Barker DG (2009) A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol 151:1197–1206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SE, Bowen GD (1979) Soil temperature, mycorrhizal infection and nodulation in Medicago truncatula and Trifolium subterraneum. Soil Biol Biochem 11:469–473

    Article  Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Arbuscular mycorrhizae in crop production. Haworth’s Food Products Press, New York, pp 67–122

    Google Scholar 

  • Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Syst Appl Microbiol 24:83–97

    Article  CAS  PubMed  Google Scholar 

  • Subba Rao NS (1985) Effect of combined inoculation of Azospirillum brasilense and vesicular arbuscular mycorrhiza on pearl millet (Pennisetum americanum). Plant Soil 81:283–286

    Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int. doi:10.1155/2013/863240

    PubMed Central  PubMed  Google Scholar 

  • Tsimilli-Michael M, Eggenberg P, Biro B, Koves-Pechy K, Voros I, Strasser RJ (2000) Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil Ecol 15:169–182

    Article  Google Scholar 

  • Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011

    Article  CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001) Application of free and Ca-alginate-entrapped Glomus deserticola and Yarowia lipolytica in a soil-plant system. J Biotechnol 91:237–242

    Article  CAS  PubMed  Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscularmycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Article  Google Scholar 

  • Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainio L et al (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27:243–258

    Article  Google Scholar 

  • Villegas J, Fortin JA (2002) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Can J Bot 80:571–576

    Article  CAS  Google Scholar 

  • Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24:365–371

    Article  Google Scholar 

  • Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Döbereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alfonso Domínguez-Núñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Domínguez-Núñez, J.A., Berrocal-Lobo, M., Albanesi, A.S. (2015). Interaction of Azospirillum and Mycorrhiza. In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_23

Download citation

Publish with us

Policies and ethics