Variable Length Motif-Based Time Series Classification

  • Myat Su Yin
  • Songsri Tangsripairoj
  • Benjarath Pupacdi
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 265)

Abstract

Variable length time series motif discovery has attracted great interest in the community of time series data mining due to its importance in many applications such as medicine, motion analysis and robotics studies. In this work, a simple yet efficient suffix array based variable length motif discovery is proposed using a symbolic representation of time. As motif discovery is performed in discrete, low-dimensional representation, the number of motifs discovered and their frequencies are partially influenced by the number of symbols used to represent the motifs. We experimented with 4 electrocardiogram data sets from a benchmark repository to investigate the effect of alphabet size on the quantity and the quality of motifs from the time series classification perspective. The finding indicates that our approach can find variable length motifs and the discovered motifs can be used in classification of data where frequent patterns are inherently known to exist.

Keywords

Variable length time series motif discovery suffix array repeated pattern discovery time series classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Das, G., Lin, K., Mannila, H.: Rule Discovery from Time Series. In: Proceedings of Fourth Int’l Conf. Knowledge Discovery and Data Mining, New York, NY, USA, pp. 16–22 (1998)Google Scholar
  2. 2.
    Phu, L., Anh, D.T.: Motif-Based Method for Initialization the K-Means, pp. 11–20 (2011)Google Scholar
  3. 3.
    Hegland, M., Clarke, W., Kahn, M.: Mining the MACHO dataset. Computer Physics Communications 142, 22–28 (2001)CrossRefGoogle Scholar
  4. 4.
    Lin, J., Keogh, E., Lonardi, S.: Visualizing and discovering non-trivial patterns in large time series databases. Information Visualization 4, 61–82 (2005)CrossRefGoogle Scholar
  5. 5.
    Li, Y., Lin, J., Oates, T.: Visualizing Variable-Length Time Series Motifs. In: Proceedings of the 2012 SIAM International Conference on Data Mining, Anaheim, CA, pp. 895–906 (2012)CrossRefGoogle Scholar
  6. 6.
    Mueen, A.: Enumeration of Time Series Motifs of All Lengths. In: ICDM. IEEE (2013)Google Scholar
  7. 7.
    Ratanamahatana, C.A., Lin, J., Dimitrios, G., Keogh, E.J., Vlachos, M., Das, G.: Mining Time Series Data. In: The Data Mining and Knowledge Discovery Handbook, pp. 1069–1103 (2005)Google Scholar
  8. 8.
    Castro, N., Azevedo, P.: Significant Motifs in Time Series. Statistical Analysis and Data Mining 5(1), 35–53 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Buza, K., Schmidt-Thieme, L.: Motif-based Classification of Time Series with Bayesian Networks and SVMs. In: Fink, A., Lausen, B., Seidel, W., Ultsch, A. (eds.) Advances in Data Analysis, Data Handling and Business Intelligence, pp. 105–114 (2010)CrossRefGoogle Scholar
  10. 10.
    Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: A Novel Symbolic Representation of Time Series. Data Mining and Knowledge Discovery 15, 107–144 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chiu, B., Keogh, E., Lonardi, S.: Probabilistic Discovery of Time Series Motifs. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 493–498. ACM Press, New York (2003)Google Scholar
  12. 12.
    Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches. SIAM Journal on Computing 22, 935–948 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ferragina, P., Fischer, J.: Suffix Arrays on Words. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 328–339. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Fischer, J.: Inducing the LCP-Array. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 374–385. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: The Enhanced Suffix Array and Its Applications to Genome Analysis. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 449–463. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR Time Series Classification/Clustering Homepage, http://www.cs.ucr.edu/~eamonn/time_series_data/
  17. 17.
    Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theoretical Computer Science 387, 258–272 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its Applications. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Myat Su Yin
    • 1
  • Songsri Tangsripairoj
    • 1
  • Benjarath Pupacdi
    • 2
  1. 1.Faculty of ICTMahidol UniversityBangkokThailand
  2. 2.Chulabhorn Research InstituteBangkokThailand

Personalised recommendations