Advertisement

Genetic Algorithm Based Prediction of an Optimum Parametric Combination for Minimum Thrust Force in Bone Drilling

  • Rupesh Kumar Pandey
  • Sudhansu Sekhar Panda
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 265)

Abstract

Drilling operation on bone for screw insertion to fix the broken bones or for the fixation of implants during orthopaedic surgery is highly sensitive. It demands for minimum drilling damage of bone for proper fixation and quick recovery postoperatively. The aim of the present study is to find out an optimum combination of bone drilling parameters (feed rate and spindle speed) for minimum thrust force during bone drilling using genetic algorithm (GA). Central composite design is employed to carry out the bone drilling experiments and based on the experimental results, a response surface model was developed. This model is used as a fitness function for genetic algorithm (GA). The investigation showed that the GA technique can efficaciously estimate the optimal setting of bone drilling parameters for minimum thrust force value. The suggested approach can be very useful for orthopaedic surgeons to perform minimally invasive drilling of bone.

Keywords

Bone drilling Thrust force Response surface methodology Genetic algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pandey, R.K., Panda, S.S.: Drilling of bone: A comprehensive review. Journal of Clinical Orthopaedics and Trauma 4, 15–30 (2013)CrossRefGoogle Scholar
  2. 2.
    Lee, J., Gozen, A.B., Ozdoganlar, O.B.: Modeling and experimentation of bone drilling forces. Journal of Biomechanics 45, 1076–1083 (2012)CrossRefGoogle Scholar
  3. 3.
    Thompson, H.C.: Effect of drilling into bone. Journal of Oral Surgery 16, 22–30 (1958)Google Scholar
  4. 4.
    Wiggins, K.L., Malkin, S.: Drilling of bone. Journal of Biomechanics 9, 553–559 (1976)CrossRefGoogle Scholar
  5. 5.
    Brett, P.N., Baker, D.A., Taylor, R., Griffiths, M.V.: Controlling the penetration of flexible bone tissue using the stapedotomy microdrill. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 218, 343–351 (2004)CrossRefGoogle Scholar
  6. 6.
    Kendoff, D., Citak, M., Gardner, M.J., Stubig, T., Krettek, C., Hufner, T.: Improved accuracy of navigated drilling using a drill alignment device. Journal of Orthopaedic Research 25, 951–957 (2007)CrossRefGoogle Scholar
  7. 7.
    Ong, F.R., Bouazza-Marouf, K.: The detection of drill-bit break-through for the enhancement of safety in mechatronic assisted orthopaedic drilling. Mechatronics 9, 565–588 (1999)CrossRefGoogle Scholar
  8. 8.
    Price, M., Molloy, S., Solan, M., Sutton, A., Ricketts, D.M.: The rate of instrument breakage during orthopaedic procedures. International Orthopaedics 26, 185–187 (2002)CrossRefGoogle Scholar
  9. 9.
    Bassi, J.L., Pankaj, M., Navdeep, S.: A technique for removal of broken cannulated drill-bit: Bassi’s method. Journal of Orthopaedic Trauma 22, 56–58 (2008)CrossRefGoogle Scholar
  10. 10.
    Augustin, G., Davila, S., Mihoci, K., Udiljak, T., Vedrina, D.S., Antabak, A.: Thermal osteonecrosis and bone drilling parameters revisited. Archives of Orthopaedic and Trauma Surgery 128, 71–77 (2008)CrossRefGoogle Scholar
  11. 11.
    Abouzgia, M.B., James, D.F.: Temperature rise during drilling through bone. International Journal of Oral and Maxillofacial Implants 12, 342–3531 (1997)Google Scholar
  12. 12.
    Hobkirk, J.A., Rusiniak, K.: Investigation of variable factors in drilling bone. Journal of Oral and Maxillofacial Surgery 35, 968–973 (1977)Google Scholar
  13. 13.
    Jacobs, C.H., Berry, J.T., Pope, M.H., Hoaglund, F.T.: A study of the bone machining process-drilling. Journal of Biomechanics 9, 343–349 (1976)CrossRefGoogle Scholar
  14. 14.
    Albrektsson, T.: Measurements of shaft speed while drilling through bone. Journal of Oral and Maxillofacial Surgery 53, 1315–1316 (1995)CrossRefGoogle Scholar
  15. 15.
    Myers, R.H., Montgomery, D.C.: Response surface methodology, 2nd edn. Wiley, New York (2002) ISBN 0-471-41255-4Google Scholar
  16. 16.
    Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for experimenters, 2nd edn. Wiley, New York (2005) ISBN 13978-0471-71813-0Google Scholar
  17. 17.
    Deb, K.: Chichester (ed.) Multi-objective Optimization using Evolutionary Algorithms. John Wiley and Sons, Ltd., England (2001)Google Scholar
  18. 18.
    Udayakumar, T., Raja, K., Afsal, T., Husain, M., Sathiya, P.: Prediction and optimization of friction welding parameters for super duplex stainless steel (UNS S32760) joints. Materials and Design 53, 226–235 (2014)CrossRefGoogle Scholar
  19. 19.
    Karaca, F., Aksakal, B., Kom, M.: Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: An in vitro study. Medical Engineering & Physics 33(10), 1221–1227 (2011)CrossRefGoogle Scholar
  20. 20.
    Lee, J., Ozdoganlar, O.B., Rabin, Y.: An experimental investigation on thermal exposure during bone drilling. Medical Engineering & Physics 34(10), 1510–1520 (2012)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Bhushan, R.K., Kumar, S., Das, S.: GA Approach for Optimization of Surface Roughness Parameters in Machining of Al Alloy SiC Particle Composite. Journal of Materials Engineering and Performance 21, 1676–1686 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations