Wireless Mesh Networks and Cloud Computing for Real Time Environmental Simulations

  • Peter Kropf
  • Eryk Schiller
  • Philip Brunner
  • Oliver Schilling
  • Daniel Hunkeler
  • Andrei Lapin
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 265)

Abstract

Predicting the influence of drinking water pumping on stream and groundwater levels is essential for sustainable water management. Given the highly dynamic nature of such systems any quantitative analysis must be based on robust and reliable modeling and simulation approaches. The paper presents a wireless mesh-network framework for environmental real time monitoring integrated with a cloud computing environment to execute the hydrogeological simulation model. The simulation results can then be used to sustainably control the pumping stations. The use case of the Emmental catchment and pumping location illustrates the feasibility and effectiveness of our approach even in harsh environmental conditions.

Keywords

wireless mesh network cloud computing data assimilation environmental measurements hydrogeological modelling and simulation ground water abstraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badawy, G., Sayegh, A., Todd, T.: Solar powered wlan mesh network provisioning for temporary deployments. In: Wireless Communications and Networking Conference, WCNC 2008, pp. 2271–2276. IEEE (March 2008)Google Scholar
  2. 2.
    Wu, D., Mohapatra, P.: Qurinet: A wide-area wireless mesh testbed for research and experimental evaluations. In: 2010 Second International Conference on Communication Systems and Networks (COMSNETS), pp. 1–10 (January 2010)Google Scholar
  3. 3.
    Jamakovic, A., Dimitrova, D.C., Anwander, M., Macicas, T., Braun, T., Schwanbeck, J., Staub, T., Nyffenegger, B.: Real-world energy measurements of a wireless mesh network. In: Pierson, J.-M., Da Costa, G., Dittmann, L. (eds.) EE-LSDS 2013. LNCS, vol. 8046, pp. 218–232. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Anwander, M., Braun, T., Jamakovic, A., Staub, T.: Authentication and authorisation mechanisms in support of secure access to wmn resources. In: 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–6 (June 2012)Google Scholar
  5. 5.
    Schiller, E., Monakhov, A., Kropf, P.: Shibboleth based authentication, authorization, accounting and auditing in wireless mesh networks. In: LCN, pp. 918–926 (2011)Google Scholar
  6. 6.
    Kunszt, P., Maffioletti, S., Flanders, D., Eurich, M., Schiller, E., Bohnert, T., Edmonds, A., Stockinger, H., Jamakovic-Kapic, A., Haug, S., Flury, P., Leinen, S.: Towards a swiss national research infrastructure. In: Proceedings of the 1st International Workshop on Federative and Interoperable Cloud Infrastructures 2013, FedICI 2013 Organized in Conjunction with Euro-par (August 2013)Google Scholar
  7. 7.
    Partington, D., Brunner, P., Frei, S., Simmons, C.T., Werner, A.D., Therrien, R., Maier, H.R., Dandy, G.C., Fleckenstein, J.H.: Interpreting streamflow generation mechanisms from integrated surface-subsurface flow models of a riparian wetland and catchment. Water Resources Research 49(9), 5501–5519 (2013)CrossRefGoogle Scholar
  8. 8.
    Brunner, P., Cook, P.G., Simmons, C.T.: Disconnected surface water and groundwater: from theory to practice. Ground Water 49(4), 460–467 (2011)CrossRefGoogle Scholar
  9. 9.
    Winter, T.C., Harvey, J.W., Franke, O.L.: Alley, W.M.: Ground Water and Surface Water A Single Resource. USGS, Circular 1139, Denver, Colorado (1998)Google Scholar
  10. 10.
    Evensen, G.: Data assimilation: the ensemble Kalman filter, 2nd edn. Springer, New York (2009)CrossRefGoogle Scholar
  11. 11.
    Hendricks Franssen, H.J., Kinzelbach, W.: Ensemble kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. Journal of Hydrology 365(3-4), 261–274 (2009)CrossRefGoogle Scholar
  12. 12.
    Brunner, P., Simmons, C.T.: Hydrogeosphere: A fully integrated, physically based hydrological model. Ground Water 50(2), 170–176 (2012)CrossRefGoogle Scholar
  13. 13.
    Therrien, R., McLaren, R., Sudicky, E., Panday, S.: HydroGeoSphere. Groundwater Simulations Group (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter Kropf
    • 1
  • Eryk Schiller
    • 1
  • Philip Brunner
    • 2
  • Oliver Schilling
    • 2
  • Daniel Hunkeler
    • 2
  • Andrei Lapin
    • 1
  1. 1.Computer Science department (IIUN)Université de NeuchâtelNeuchâtelSwitzerland
  2. 2.Centre for Hydrogeology and Geothermics (CHYN)Université de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations