Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 187))

  • 987 Accesses

Abstract

This chapter deals with a brief review of fractal electrodynamics including fractal antenna, fractal frequency selective surface and metamaterials. A brief review of different classes’ of aperture coupling problems in waveguides, conducting screens and cavities has also being reported here. Based on the review work, several aperture coupling problems involving rectangular waveguides, conducting screens and cavities are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, New York, 1982)

    MATH  Google Scholar 

  2. H.O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer, New York, 1992)

    Google Scholar 

  3. J.F. Gouyet, Physics and Fractal structures (Springer, New York, 1996)

    Google Scholar 

  4. D.H. Werner, R. Mittra, Frontiers in Electromagnetics (IEEE Press, New York, 2000)

    Google Scholar 

  5. D.H. Werner, S. Ganguly, An overview of fractal antenna engineering research. IEEE Antennas Propag. Mag. 45(1), 38–57 (2003)

    ADS  Google Scholar 

  6. C. Puente, J. Romeu, R. Pous, X. Garcia, F. Benitez, Fractal multiband antenna based on Sierpinski gasket. Electron. Lett. 32(1), 1–2 (1996)

    Google Scholar 

  7. C. Puente, J. Romeu, R. Pous, A. Cardama, On the behavior of the Sierpinski multiband antenna. Antennas Propag. 46(4), 517–524 (1998)

    ADS  MATH  Google Scholar 

  8. C. Borja, C. Puente, A. Medina, Iterative network model to predict the behavior of Sierpinski fractal network. Electron. Lett. 34(15), 1443–1445 (1998)

    Google Scholar 

  9. C. Puente, C. Borja, M. Navarro, J. Romeu, An iterative model for fractal antennas: application to the Sierpinski gasket antenna. Antennas Propag. 48(5), 713–719 (2000)

    Google Scholar 

  10. C. Puente, J. Romeu, R. Bartoleme, R. Pous, Perturbation of the Sierpinski antenna to allocate operating bands. Electron. Lett. 32(24), 2186–2188 (1996)

    Google Scholar 

  11. C. Puente, M. Navarro, J. Romeu, R. Pous, Variations on the fractal Sierpinski antenna flare angle. Antennas Propag. 4, 2340–2343 (1998)

    Google Scholar 

  12. S.R. Best, On the significance of self-similar fractal geometry in determining the multiband behavior of the Sierpinski gasket antenna. IEEE Antennas Wirel. Propag. Lett. 1, 22–25 (2002)

    ADS  Google Scholar 

  13. S.R. Best, Operating band comparison of the perturbed sierpinski and modified parany gasket antennas. IEEE Antennas Wirel. Propag. Lett. 1, 35–38 (2002)

    ADS  Google Scholar 

  14. S.R. Best, On the radiation pattern characteristics of the Sierpinski and modified parany gasket antennas. IEEE Antennas Wirel. Propag. Lett. 1, 39–42 (2002)

    ADS  Google Scholar 

  15. R.K. Mishra, R. Ghatak, D.R. Poddar, Design formula for Sierpinski gasket pre-fractal planar monopole antennas. IEEE Antennas Propag. Mag. 3(3), 104–107 (2008)

    ADS  Google Scholar 

  16. C. Puente, J. Romeu, R. Pous, J. Ramis, A. Hijazo, Small but long koch fractal monopole. Electron. Lett. 34(1), 9–10 (1998)

    Google Scholar 

  17. C. Puente, J. Romeu, A. Cardama, The koch monopole: a small fractal antenna. IEEE Trans. Antennas Propag. 48(11), 1773–1781 (2000)

    ADS  Google Scholar 

  18. S.R. Best, A discusson on the significance of geometry in determining the resonant behavior of fractal and other non-euclidean wire antennas. IEEE Antennas Propag. Mag. 45(3), 9–28 (2003)

    ADS  Google Scholar 

  19. S.R. Best, On the performance properties of the koch fractal and other bent wire monopoles. IEEE Trans. Antennas Propag. 51(6), 1292–1300 (2003)

    ADS  Google Scholar 

  20. K.J. Vinoy, K.A. Jose, V.K. Varadan, On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using koch curve. IEEE Trans. Antennas Propag. 51(9), 2296–2303 (2003)

    ADS  Google Scholar 

  21. K.J. Vinoy, K.A. Jose, V.K. Varadan, V.V. Varadan, Resesonant frequency of Hilbert curve fractal antenna. Antennas Propag. 3, 648–651 (2001)

    Google Scholar 

  22. K.J. Vinoy, K.A. Jose, V.K. Varadan, V.V. Varadan, Hilbert curve fractal antenna: a small resonant antenna for VHF/UHF applications. Microwave Opt. Tech. Lett. 29(4), 215–219 (2001)

    Google Scholar 

  23. K.J. Vinoy, K.A. Jose, V.K. Varadan, V.V. Varadan, Hilbert curve antenna with reconfigurable characteristics, in Proceedings of IEEE International Symposium on Microwave Theory and Technology, 2001, pp. 381–384

    Google Scholar 

  24. J.P. Gianvittorio, Fractal antennas: design, characterization and applications. Master’s thesis, Department of Electrical Engineering, University of California, Los Angeles, 2000

    Google Scholar 

  25. J.P. Gianvittorio, Y. Rahmat-Samii, Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 44(1), 20–36 (2002)

    ADS  Google Scholar 

  26. F. Arazm, R. Karimzadeh, C. Ghobadi, J. Norinia, Square loop antenna miniaturization using new fractal geometry, in Proceedings of 6th International Conference on Advanced Communication Technology, 2004, pp. 164–169

    Google Scholar 

  27. R. Ataeiseresht, C. Ghobadi, J. Nourinia, A novel analysis of minkowski fractal microstrip patch antenna. J. Electromagn. Waves Appl. 20(8), 1115–1127 (2006)

    Google Scholar 

  28. A.R. Harish, A. Agarwal, N. Kuchhal, Compact loop antennas and arrays, in Proceedings of International Conference on Antenna Technologies (ICAT-2005), 2005, pp. 531–534

    Google Scholar 

  29. R.K. Joshi, A.R. Harish, Broadband concentric rings fractal slot antenna, in 28th General Assembly of URSI, New Delhi, India, Oct 2005

    Google Scholar 

  30. R.K. Joshi, A.R. Harish, Parasitically loaded Vivaldi antenna, in Proceedings of International Conference on Antenna Technologies (ICAT-2005), 2005, pp. 525–529

    Google Scholar 

  31. A.R. Harish, R.K. Joshi, Studies on application of fractal based geometries in printed antenna structures, in IEEE Applied Electromagnetics Conference (AEMC-2007), Kolkata, India, Dec 2007, pp. 1–4

    Google Scholar 

  32. W. Chen, G. Wang, C. Zhang, Small size microstrip patch antennas combining koch and Sierpinski fractal shapes. IEEE Antennas Wirel. Propag. Lett. 7, 738–741 (2008)

    ADS  Google Scholar 

  33. J. Anguera, E. Martinez, C. Puente, C. Borja, J. Soler, Broadband dual frequency microstrip patch antenna with modified Sierpinski fractal geometry. IEEE Trans. Antennas Propag. 52(1), 66–73 (2004)

    ADS  Google Scholar 

  34. J. Anguera, E. Martinez, C. Puente, C. Borja, J. Soler, Broadband tripple frequency microstrip patch radiator combining a dual band modified Sierpinski fractal and a monoband antenna. IEEE Trans. Antennas Propag. 54(11), 3367–3373 (2006)

    ADS  Google Scholar 

  35. J. Romeu, C. Borja, S. Blanch, High directivity modes in the koch island fractal patch antenna, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 3, Salt Lake City, USA, July 2000, pp. 1696–1699

    Google Scholar 

  36. C. Borja, G. Font, S. Blanch, J. Romeu, High directivity fractal boundary microstrip patch antenna. Electron. Lett. 36(9), 778–779 (2000)

    Google Scholar 

  37. J. Anguera, C. Puente, C. Borja, J. Soler, Dual frequency broadband stacked microstrip antenna using a reactive loading and a fractal shaped radiating edge. IEEE Antennas Wirel. Propag. Lett. 6, 309–312 (2007)

    ADS  Google Scholar 

  38. K. Zhang, C. Chen, C. Guo, J. Xu, On the behavior of conformal Sierpinski fractal microstrip antenna. Millimeter Wave Tech. 1073–1076 (2008)

    Google Scholar 

  39. K. Zhang, Q. Zhang, C. Guo, J. Xu, Analysis of conformal Sierpinski fractal microstrip antenna. Millimeter Wave Tech. 1106–1109 (2008)

    Google Scholar 

  40. D.E. Anagnostou, J. Papapolymerou, M.M. Tentzeris, C.G. Christodoulou, A printed log-periodic Koch-dipole array (LPKDA). IEEE Antennas Wirel. Propag. Lett. 7, 456–460 (2008)

    ADS  Google Scholar 

  41. R.H. Patnam, Broadband CPW-fed planar Koch fractal loop antenna. IEEE Antennas Wirel. Propag. Lett. 7, 429–431 (2008)

    ADS  Google Scholar 

  42. D.D. Krishna, M. Gopikrishna, C.K. Anandan, P. Mohanan, K. Vasudevan, CPW-fed Koch fractal slot antenna for WLAN/WiMAX applications. IEEE Antennas Wirel. Propag. Lett. 7, 389–392 (2008)

    ADS  Google Scholar 

  43. D. Chang, B. Zeng, J. Liu, CPW-fed circular fractal slot antenna design for dual-band applications. IEEE Trans. Antennas Propag. 56(12), 3630–3636 (2008)

    ADS  Google Scholar 

  44. R. Ghatak, R.K. Mishra, D.R. Poddar, Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11 a/b WLAN application. IEEE Antennas Wirel. Propag. Lett. 7, 742–744 (2008)

    ADS  Google Scholar 

  45. L. Lizzi, F. Viani, E. Zeni, A. Massa, A DVBH/GSM/UMTS planar antenna for multimode wireless devices. IEEE Antennas Wirel. Propag. Lett. 8, 568–571 (2009)

    ADS  Google Scholar 

  46. A. Ramadan, K.Y. Kabalan, A. El-Hajj, S. Khoury, M. Al-Husseini, A reconfigurable u-Koch microstrip antenna for wireless applications. Prog. Electromagnet. Res. 93, 355–367 (2009)

    Google Scholar 

  47. E.E.C. de Oliveira, P.H. da F. Silva, A.L.P.S. Campos, S.G. da Silva, Overall size antenna reduction using fractal elements. Microwave Opt. Technol. Lett. 51(3), 671–675 (2009)

    Google Scholar 

  48. M. Comisso, Theoretical and numerical analysis of the resonant behaviour of the minkowski fractal dipole antenna. IET Microwaves Antennas Propag. 3(3), 456–464 (2009)

    Google Scholar 

  49. K.C. Hwang, Dual-wideband monopole antenna using a modified half-Sierpinski fractal gasket. Electron. Lett. 45(10), 487–489 (2009)

    Google Scholar 

  50. J. Anguera, J.P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, K. Sayegrih, P. Van Roy, Metallized foams for antenna design: application to fractal-shaped sierpinski-carpet monopole. rogress. Electromagnet. Res. 104, 239–251 (2010)

    Google Scholar 

  51. S.A. Hamzah, M. Esa, N. Malik, Reduced size microwave fractal meander dipole antenna with reconfigurable feature, in Proceedings of International Symposium on Antennas and Propagation, Bangkok, Thailand, Oct 2009

    Google Scholar 

  52. R. Ghatak, D.R. Poddar, R.K. Mishra, Design of Sierpinski gasket fractal microstrip antenna using real coded genetic algorithm. IET Microwaves Antennas Propag. 3(7), 1133–1140 (2009)

    Google Scholar 

  53. R. Azaro, F. Viani, L. Lizzi, E. Zeni, A. Massa, A monopolar quad-band antenna based on a hilbert self-affine prefractal geometry. IEEE Antennas Wirel. Propag. Lett. 8, 177–180 (2009)

    ADS  Google Scholar 

  54. W.J. Krzysztofik, Modified Sierpinski fractal monopole for ism-bands handset applications. IEEE Trans. Antennas Propag. 57(3), 606–615 (2009)

    ADS  Google Scholar 

  55. F. Viani, Dual-band sierpinski pre-fractal antenna for 2.4 ghz-wlan and 800 mhz-lte wireless devices. Prog. Electromagnet. Res. C 35, 63–71 (2013)

    Google Scholar 

  56. D. Li, J. Mao, A Koch-like sided fractal bow-tie dipole antenna. IEEE Trans. Antennas Propag. 60(5), 2042–2051 (2012)

    ADS  MathSciNet  Google Scholar 

  57. K.C. Hwang, Broadband circularly-polarised spidron fractal slot antenna. Electron. Lett. 45(1), 3–4 (2009)

    Google Scholar 

  58. A. Azari, A new super wideband fractal microstrip antenna. IEEE Trans. Antennas Propag. 59(5), 1724–1727 (2011)

    ADS  MathSciNet  Google Scholar 

  59. R. Kumar, K.K. Sawant, Design of CPW-feed inscribed square circular fractal antenna for UWB applications. Microwave Opt. Technol. Lett. 53(5), 1079–1083 (2011)

    Google Scholar 

  60. H. Oraizi, S. Hedayati, Miniaturized uwb monopole microstrip antenna design by the combination of giusepe peano and Sierpinski carpet fractals. IEEE Antennas Wirel. Propag. Lett. 10, 67–70 (2011)

    ADS  Google Scholar 

  61. L. Lizzi, G. Oliveri, Hybrid design of a fractal-shaped GSM/UMTS antenna. J. Electromagnet. Waves Appl. 24(5–6), 707–719 (2010)

    Google Scholar 

  62. L. Lizzi, R. Azaro, G. Oliveri, A. Massa, Multiband fractal antenna for wireless communication systems for emergency management. J. Electromagnet. Waves Appl. 26(1), 1–11 (2012)

    Google Scholar 

  63. F. Miyamaru, Y. Saito, M.W. Takeda, L. Liu, B. Hou, W. Wen, P. Sheng, Emission of terahertz radiations from fractal antennas. Appl. Phys. Lett. 95(22), 221111–221111-3 (2009)

    Google Scholar 

  64. J.M. Diaoa, F. Yanga, Z.P. Niea, J. Ouyanga, P. Yang, Separated fractal antennas for improved emission performance of terahertz radiations. J. Electromagnet. Waves Appl. 26(8–9), 1158–1167 (2012)

    Google Scholar 

  65. C. Yang, C. Tsai, S. Chen, Implantable high-gain dental antennas for minimally invasive biomedical devices. IEEE Trans. Antennas Propag. 61(5), 2380–2387 (2013)

    ADS  Google Scholar 

  66. R. Nagarjun, G. George, D. Thiripurasundari, R. Poonkuzhali, Z.C. Alex, Design of a triple band planar bow-tie antenna for wearable applications, in 2013 International Conference on Communications and Signal Processing (ICCSP), 2013, pp. 1185–1189

    Google Scholar 

  67. J. Romeu, Y. Rahmat-Samii, A fractal based FSS with dual band characteristics, in Proceedings of IEEE International Symposium on Antennas Propagat, Aug 1999, pp. 1734–1737

    Google Scholar 

  68. J. Romeu, Y. Rahmat-Sammi, Dual band FSS with fractal elements. Electron. Lett. 35(9), 702–703 (1999)

    Google Scholar 

  69. J. Romeu, Y. Rahmat-Sammi, Fractal FSS: a novel dual band frequency selective surface. IEEE Trans. Antennas Propag. 48(7), 1097–1105 (2000)

    ADS  Google Scholar 

  70. D.H. Werner, D. Lee, Design of dual polarized multiband frequency selective surfaces using fractal elements. Electron. Lett. 36(6), 487–488 (2000)

    Google Scholar 

  71. D.H. Warner, D. Lee, A design approach for dual polarized multiband frequency selective surface using fractal element, in Proceedings of IEEE International Symposium on Antennas Propagation, July 2000, pp. 1692–1695

    Google Scholar 

  72. J.P. Gianvittorio, J. Romeu, S. Blanch, Y. Rahmat-Samii, Self-similar prefractal frequency selective surfaces for multiband and dual-polarized applications. IEEE Trans. Antennas Propag. 51(11), 3088–3096 (2003)

    ADS  Google Scholar 

  73. R. Holakouei, J. Nournia, C. Ghobadi, A design approach for a dual polarized, dual band reject frequency selective surface using a new fractal element. Int. J. Electron. Commun. 61(9), 568–579 (2007)

    Google Scholar 

  74. M. Wen, D. Lee, R. Yang, H. Wu, C. Liu, A Sierpinski fractal based dual-mode bandpass filter. Microwave Opt. Technol. Lett. 50(9), 2287–2289 (2008)

    Google Scholar 

  75. J. Xiao, H. Huang, W. Ji, Wideband microstrip bandpass filter using single patch resonator. Microw Millimeter Wave Tech. 1470–1473 (2008)

    Google Scholar 

  76. W. Chen, G. Wang, Y. Qi, Fractal shaped Hi-Lo microstrip low-pass filters with high passband performance. Microwave Opt. Technol. Lett. 49(10), 2577–2579 (2007)

    Google Scholar 

  77. F. Frezza, L. Pajewski, G. Schettini, Fractal two dimensional electromagnetic bandgap structures. IEEE Trans. Microwave Theory Technol. 52(1), 220–227 (2004)

    ADS  MathSciNet  Google Scholar 

  78. X.L. Bao, G. Ruvio, M.J. Ammann, M. John, A novel GPS patch antenna on a fractal hi-impedance surface substrate. IEEE Antennas Wirel. Propag. Lett. 5, 323–326 (2006)

    ADS  Google Scholar 

  79. J. McVay, N. Engheta, A. Hoorfar, High impedance metamaterial surfaces using Hilbert curve inclusions. IEEE Microwave Wirel. Compon. Lett. 14(3), 130–132 (2004)

    Google Scholar 

  80. J. McVay, A. Hoorfar, N. Engheta, Thin absorbers using space-filling curve high impedance surfaces. Proc. IEEE Int. Symp. Antennas Propag. 2A, 22–25 (2005)

    Google Scholar 

  81. D.J. Kern, D.H. Werner, A. Monorchio, L. Lanuzza, M.J. Wilhelm, The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Trans. Antennas Propag. 53(1), 8–17 (2005)

    ADS  Google Scholar 

  82. D. Yunfeng, L. Shaobin, W. Yong, A novel dual-band compact electromagnetic bandgap (EBG) structure and its application. Microwave Millimeter Wave Technol. 51–53 (2008)

    Google Scholar 

  83. J.I.A. Trindade, P.H.F. da Silva, A.L.P.S. Campos, A.G. D’Assuncao, Analysis of stop-band frequency selective surfaces with Drer’s pentagon pre-fractals patch elements. IEEE Trans. Magn. 47(5), 1518–1521 (2011)

    ADS  Google Scholar 

  84. P.H. da, F. Silva, A.F. dos Santos, R.M.S. Cruz, A.G. D’Assun, dual-band bandstop frequency selective surfaces with gosper prefractal elements. Microwave Opt. Technol. Lett. 54(3), 771–775 (2012)

    Google Scholar 

  85. S. Zheng, Y. Yin, J. Fan, X. Yang, B. Li, W. Liu, Analysis of miniature frequency selective surfaces based on fractal antenna-filter-antenna arrays. IEEE Antennas Wirel. Propag. Lett. 11, 240–243 (2012)

    ADS  Google Scholar 

  86. M.R. da Silva, C. de l. nbrega, P.H. da F. Silva, A.G. D’Assuno1, Dual-polarized band-stop fss spatial filters using vicsek fractal geometry. Microwave Opt. Technol. Lett. 55(1), 31–34 (2013)

    Google Scholar 

  87. C. de L. Nobrega, M.R. da Silva, W.C. de Araujo, P.H. da F. Silva, A.G. D’Assuncao, Analysis of frequency selective surfaces with T-shaped pre-fractals patch elements, in Proceedings of IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Oct 2011, pp. 694–696

    Google Scholar 

  88. G. Volpe, G. Volpe, R. Quidant, Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. Opt. Express 19(4), 3612–3618 (2011)

    Google Scholar 

  89. H. Xu, G. Wang, X. Yang, X. Chen, Compact, low return-loss, and sharp-rejection uwb filter using Sierpinski carpet slot in a metamaterial transmission line. Int. J. Appl. Electromagnet. Mech. 37(4), 253–262 (2011)

    Google Scholar 

  90. Q. Du, J. Liu, H. Yang, X. Yi, Bilayer fractal structure with multiband left-handed characteristics. Appl. Opt. 50(24), 4798–4804 (2011)

    ADS  Google Scholar 

  91. H.N.B. Phuong, D.N. Chien, T.M. Tuan, Novel design of electromagnetic bandgap using fractal geometry. Int. J. Antennas Propag. 2013 (2013)

    Google Scholar 

  92. M. Kufa, Z. Raida, Lowpass filter with reduced fractal defected ground structure. Electron. Lett. 49(3), 1999–2001 (2013)

    Google Scholar 

  93. B. Ghosh, D. Yang, J. Cheng, J.S. Fu, Bandpass characteristics of substrate integrated waveguide loaded with Hilbert curve fractal slot, in Proceedings of IEEE International Workshop on Electromagnetics (iWEM), Taipei, Taiwan, Aug 2011

    Google Scholar 

  94. L. Geng, G.M. Wang, C.X. Zhang, Y.W. Wang, Fractal-based composite right/left-handed transmission line and its applications in miniaturized negative-order resonant antennas. Prog. Electromagnet. Res. Lett. 36, 155–162 (2013)

    Google Scholar 

  95. G.L. Matthaei, L. Young, E.M.T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures (McGraw-Hill, NewYork, 1964)

    Google Scholar 

  96. K. Chang, P.J. Khan, Coupling between narrow transverse inductive strips in waveguide. IEEE Trans. Microwave Theory Technol. 24(2), 101–105 (1976)

    ADS  Google Scholar 

  97. H. Auda, R.F. Harrington, Inductive posts and diaphragms of arbitrary shape and number in a rectangular waveguide. IEEE Trans. Microwave Theory Technol. 32(6), 606–613 (1984)

    ADS  Google Scholar 

  98. R. Safavi-Naini, R.H. MacPhie, Scattering at rectangular-to-rectangular waveguide junctions. IEEE Trans. Microwave Theory Technol. 30(11), 2060–2063 (1982)

    ADS  Google Scholar 

  99. J.D. Wade, R.H. MacPhie, Scattering at circular-to-rectangular waveguide junctions. IEEE Trans. Microwave Theory Technol. 34(11), 1085–1091 (1986)

    ADS  Google Scholar 

  100. M. Piloni, E. Ravenelli, M. Guglielmi, Resonant aperture filters in rectangular waveguide. Microwave Theory Technol. 3, 911–914 (1999)

    Google Scholar 

  101. M. Capurso, M. Piloni, M. Guglielmi, Resonant aperture filters: improved out-of-band rejection and size reduction, in Proceedings of 31st European Microwave Conference, Oct 2001, pp. 1–4

    Google Scholar 

  102. N.G. Paterson, I. Anderson, Bandstop iris for rectangular waveguide. Electron. Lett. 12(22), 592–594 (1976)

    ADS  Google Scholar 

  103. A.A. Kirilenko, L.P. Mospan, Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide. IEEE Trans. Microwave Theory Technol. 48(8), 1419–1421 (2000)

    ADS  Google Scholar 

  104. A.A. Kirilenko, L.P. Mospan, Two- and three-slot irises as bandstop filter sections. Microwave Opt. Technol. Lett. 28(8), 282–284 (2001)

    Google Scholar 

  105. R. Yang, A.S. Omar, Investigation of multiple rectangular aperture irises in rectangular waveguide using \({\rm {TE}}_{\rm {mn}}^{\rm x}\) modes. IEEE Trans. Microwave Theory Technol. 41(8), 1369–1374 (1993)

    ADS  Google Scholar 

  106. M. Ohira, H. Deguchi, M. Tsuji, H. Shigesawa, A new dual behavior FSS resonator for waveguide filter with multiple attenuation poles, in Proceedings of 35th European Microwave Conference, Oct 2005, pp. 189–192

    Google Scholar 

  107. R.D. Seager, J.C. Vardaxoglou, D.S. Lockyer, Close coupled resonant aperture inserts for waveguide filtering applications. IEEE Microwave Wirel. Compon. Lett. 11(3), 112–114 (2001)

    Google Scholar 

  108. T. VuKhac, Solution for some waveguide discontinuities by the method of moments. IEEE Trans. Microwave Theory Technol. 20, 416–418 (1972)

    Google Scholar 

  109. H. Auda, R.F. Harrington, A moment solution for waveguide junction problems. IEEE Trans. Microwave Theory Technol. 31(7), 515–520 (1983)

    ADS  Google Scholar 

  110. S.N. Sinha, Analysis of multiple strip discontinuity in a rectangular waveguide. Theory Technol. MTT 34(6), 696–700 (1986)

    Google Scholar 

  111. A. Datta, B.N. Das, A. Chakraborty, Moment method formulation of thick diaphragms in a rectangular waveguide. IEEE Trans. Microwave Theory Technol. 40(3), 592–595 (1992)

    ADS  Google Scholar 

  112. B.N. Das, G.S.N. Raju, A. Chakraborty, Analysis of coplanar E-H plane T junction using dissimilar rectangular waveguides. IEEE Trans. Microwave Theory Technol. 36(3), 604–606 (1988)

    ADS  Google Scholar 

  113. A.I. Khalil, A.B. Yakovlev, M.B. Steer, Efficient method-of-moments formulation for the modeling of planar conductive layers in a shielded guided-wave structure. IEEE Trans. Microwave Theory Technol. 47(9), 1730–1736 (1999)

    ADS  Google Scholar 

  114. A.I. Khalil, M.B. Steer, A generalized scattering matrix method using the method of moments for electromagnetic analysis of multilayered structures in waveguides. IEEE Trans. Microwave Theory Technol. 47(11), 2151–2157 (1999)

    ADS  Google Scholar 

  115. S.W. Lee, W.R. Jones, J.J. Campbell, Convergence of numerical solutions of iris type discontinuity problems. IEEE Trans. Microwave Theory Technol. MTT 19(6):528–536 (1971)

    Google Scholar 

  116. R. Mittra, T. Itoh, T. Li, Analysis and numerical studies of relative convergence phenomenon arising in the solution of an integral equation by the moment method. Microwave Theory Technol. MTT 20(2), 96–104 (1972)

    Google Scholar 

  117. M.I. Aksun, R. Mittra, Choices of expansion and testing functions for the method of moments applied to a class of electromagnetic problems. IEEE Trans. Microwave Theory Technol. 41(3), 503–509 (1993)

    ADS  Google Scholar 

  118. C.C. Chen, Transmission of microwave through perforated flat plates of finite thickness. IEEE Trans. Microwave Theory Technol. 21(1), 1–6 (1973)

    ADS  Google Scholar 

  119. L.P. Mospan, O.V. Chistyakova, in Proceedings of Rejection Frequency Selective Surface with Two Different Apertures Over the Period, vol. 1, June 2004, pp. 269–271

    Google Scholar 

  120. W. Wen, L. Zhou, J. Li, W. Ge, C.T. Chan, P. Sheng, Subwavelength photonic band gaps from planar fractals. Phys. Rev. Lett. 89(22), 223901-1–223901-4 (2002)

    Google Scholar 

  121. L. Zhou, C.T. Chan, P. Sheng, Theoritical studies on the transmission and reflection properties of metallic planar fractals. J. Phys. D Appl. Phys. 37, 368–373 (2004)

    ADS  Google Scholar 

  122. B. Hou, G. Xu, W. Wen, Tunable band gap properties of planar metallic fractals. J. Appl. Phys. 95(22), 3231–3233 (2004)

    ADS  Google Scholar 

  123. W. Wen, L. Zhou, B. Hou, C.T. Chan, P. Sheng, Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate. Phys. Rev. B72, 153406 (2005)

    ADS  Google Scholar 

  124. R.F. Harrington, J.R. Mautz, A generalized network formulation for aperture problems. IEEE Trans. Antennas Propag. 24(6), 870–873 (1976)

    ADS  Google Scholar 

  125. J.R. Mautz, R.F. Harrington, Electromagnetic transmission through a rectangular aperture in a perfectly conducting screen. Technical report TR-76-1. Department of Electrical and Computer Engineering, Syracuse University, New York, 1976

    Google Scholar 

  126. R.F. Harrington, D.T. Auckland, Electromagnetic transmission through narrow slots in thick conducting screen. Antennas Propag. AP 28(5), 616–622 (1980)

    Google Scholar 

  127. I. Chih-Lin, R.F. Harrington, Electromagnetic transmission through an aperture of arbitrary shape in a conducting screen. Technical report Contract No 0014–76-0225, Syracuse University, 1982

    Google Scholar 

  128. S.M. Rao, D.R. Wilton, A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30(3), 409–418 (1982)

    ADS  Google Scholar 

  129. J. Lin, W.L. Curtis, M.C. Vincent, On the field distribution of an aperture. IEEE Trans. Antennas Propag. 22(3), 467–471 (1974)

    ADS  Google Scholar 

  130. R.L. Gluckstern, R. Li, R.K. Cooper, Electric polarizability and magnetic susceptibility of small holes in a thin screen. IEEE Trans. Microwave Theory Technol. 38(2), 186–192 (1990)

    ADS  Google Scholar 

  131. W.T. Cathey, Approximate expressions for field penetration through circular apertures. IEEE Trans. Electromagnet. Compat. 25(3), 339–345 (1983)

    ADS  Google Scholar 

  132. S.V. Savov, Mutual coupling between two small circular apertures in a conducting screen. IEEE Trans. Microwave Theory Technol. 41(1), 143–146 (1993)

    ADS  Google Scholar 

  133. A.E. Hajj, K.Y. Kabalan, Characteristic modes of a rectangular aperture in a perfectly conducting plane. IEEE Trans. Antennas Propag. 42(10), 1447–1450 (1994)

    ADS  Google Scholar 

  134. Y.S. Kim, H.J. Eom, Fourier transform analysis of electrostatic potential distribution through a thick slit. IEEE Trans. Electromagnet. Compat. 38(1), 77–79 (1996)

    Google Scholar 

  135. R. Luebbers, C. Penney, Scattering from apertures in infinite ground plane using fdtd. Antennas Propag. 42(5), 731–736 (1994)

    Google Scholar 

  136. T.K. Sarkar, M.F. Costa, C. Lin, R.F. Harrington, Electromagnetic transmission through mesh covered apertures and arrays of apertures in a conducting screen. IEEE Trans. Antennas Propag. AP 32(9):908–913 (1984)

    Google Scholar 

  137. W.L. Ko, R. Mittra, Scattering by a truncated periodic array. IEEE Trans. Antennas Propag. AP 36(4):496–503 (1988)

    Google Scholar 

  138. T. Cwik, R. Mittra, The effects of the truncation and curvature of periodic surfaces: a strip grating. IEEE Trans. Antennas Propag. AP 36(5):612–622 (1988)

    Google Scholar 

  139. R. Kastner, R. Mittra, Iterative analysis of finite sized planar frequency selective surfaces with rectangular patches or perforations. IEEE Trans. Antennas Propag. AP 35(4):372–377 (1987)

    Google Scholar 

  140. L. Gurel, W.C. Chew, Recursive algorithms for calculating the scattering from N strips or patches. IEEE Trans. Antennas Propag. AP 38(4):507–515 (1990)

    Google Scholar 

  141. H.H. Park, H.J. Eom, Electromagnetic scattering form multiple rectangular apertures in a thick conducting screen. IEEE Trans. Antennas Propag. 47(6), 1056–1060 (1999)

    ADS  Google Scholar 

  142. Y.B. Park, H.J. Eom, Electromagnetic transmission through multiple circular apertures in a thick conducting plane. IEEE Trans. Antennas Propag. 52(4), 1049–1055 (2004)

    ADS  Google Scholar 

  143. T. Andersson, Moment method calculations on apertures using basis singular functions. IEEE Trans. Antennas Propag. 41(12), 1709–1716 (1993)

    ADS  Google Scholar 

  144. S. Gupta, A. Bhattacharya, A. Chakraborty, Analysis of an open ended waveguide radiator with dielectric plug. IEE Proc. Microwave Antennas Propag. 144(2), 126–130 (1997)

    Google Scholar 

  145. S. Gupta, A. Chakraborty, B.N. Das, Admittance of waveguide fed slot radiators, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 2, San Jose, CA, USA, 1989, pp. 968–971

    Google Scholar 

  146. M.H. Cohen, T.H. Crowly, C.A. Lavis, The aperture admittance of rectangular waveguideradiating into half space. Technical report 339–22, Antenna Lab, Ohio University, Columbus, 1951

    Google Scholar 

  147. B.N. Das, Admittance of rectangular apertures. J. Inst. Electron. Telecommun. Eng. (India) 22(3), 133–137 (1976)

    ADS  Google Scholar 

  148. A.R. Jamieson, T.R. Rozzi, Rigorous analysis of cross polarisation in flange-mounted rectangular waveguide radiators. Electron. Lett. 13(24), 742–744 (1977)

    ADS  Google Scholar 

  149. R.H. MacPhie, A.I. Zaghloul, Radiation from a rectangular waveguide with infinite flang-exact solution by the correlation matrix method. IEEE Trans. Antennas Propag. AP 28(4):497–503 (1980)

    Google Scholar 

  150. H. Baudrand, J.W. Tao, J. Atechian, Study of radiating properties of open ended rectangular waveguides. IEEE Trans. Antennas Propag. 36(8), 1071–1077 (1988)

    ADS  Google Scholar 

  151. M. Mongiardo, T. Rozzi, Singular integral equation analysis of flange mounted rectangular waveguide radiators. IEEE Trans. Antennas Propag. 41(5):556–565 (1993)

    Google Scholar 

  152. Z. Shen, R.H. MacPhie, A simple method for calculating the reflection coefficient of open ended waveguide. IEEE Trans. Antennas Propag. 45(4), 546–548 (1997)

    Google Scholar 

  153. J.R. Mautz, R.F. Harrington, Transmission from rectangular waveguide in half space through rectangular aperure. Technical report TR-76-5, Airforce Cambridge Research Lab., USA, 1976

    Google Scholar 

  154. J. Luzwick, R.F. Harrington, Mutual coupling analysis in a finite planar rectangular waveguide antenna array. Electromagnetics 2(1), 25–42 (1982)

    Google Scholar 

  155. A.J. Fenn, G.A. Thiele, B.A. Munk, Moment method analysis offinite rectangular waveguide phassed array antennas. IEEE Trans. Antennas Propag. AP 30(4):554–564 (1982)

    Google Scholar 

  156. J. Luzwick, R.F. Harrington, A reactively loaded aperture antenna array. IEEE Trans. Antennas Propag. AP 26(4):543–547 (1978)

    Google Scholar 

  157. F. Arndt, K.H. Wolff, L. Brunjes, R. Heyen, F. Siefken, Generalized moment method analysis of planar reactively loaded rectangular waveguide arrays. IEEE Trans. Antennas Propag. 37(3), 329–338 (1989)

    ADS  Google Scholar 

  158. R. Garg, P. Bhartia, I. Bahl, A. Ittiboon, Microstrip Antenna Design Handbook (Artech House, London, 2001)

    Google Scholar 

  159. A. Hadidi, M. Hamid, Aperture field and circuit parameters of cavity-backed slot radiator. IEE Proc. Microwave Antennas Propag. Pt. H. 136(2):139–146 (1989)

    Google Scholar 

  160. T. Kotani, K. Hirasawa, S. Shi, Y. Chang, A rectangular cavity-backed slot antenna with parasitic slots. Proc. IEEE Int. Symp. Antennas Propag. 3, 166–168 (2001)

    Google Scholar 

  161. T. Kotani, K. Hirasawa, S. Song, A rectangular cavity backed S-type slot antenna. Proc. IEEE Int. Symp. Antennas Propag. 4, 22–27 (2003)

    Google Scholar 

  162. T. Takahashi, K. Hirasawa, A broadband rectangular-cavity-backed meandering slot antenna, in Proceedings of IEEE International Workshop Antenna Technology: Small Antennas and Novel, Metamaterials, March 2005, pp. 21–24

    Google Scholar 

  163. S. Shi, K. Hirasawa, Z.N. Chen, Circularly polarized rectangularly bent slot antennas backed by a rectangular cavity. IEEE Trans. Antennas Propag. 49(11), 1517–1524 (2001)

    ADS  Google Scholar 

  164. T. Takahashi, T. Kotani, K. Hirasawa, S. Shi, A rectangular cavity-backed cross-loop slot antenna. Proc. IEEE Int. Symp. Antennas Propag. 2, 448–451 (2002)

    Google Scholar 

  165. R. Azadegan, K. Sarabandi, A compact planar folded-dipole antenna for wireless applications. Proc. IEEE Int. Symp. Antennas Propag. 1, 439–442 (2003)

    Google Scholar 

  166. W. Hong, N. Behdad, K. Sarabandi, Size reduction of cavity backed slot antenna. IEEE Trans. Antennas Propag. 54(5):1461–1466 (2006)

    Google Scholar 

  167. Y. Liu, Z. Shen, H.C. Chin, W.L. Lim, A single-feed wide and dual band cavity-backed slot antenna. Microwave Opt. Tech. Lett. 49(7), 1570–1572 (2007)

    Google Scholar 

  168. J. Galejs, Admittance of rectangular slot which is backed by rectangular cavity. IEEE Trans. Antennas Propag. 11(3), 119–126 (1963)

    ADS  Google Scholar 

  169. A.T. Adams, Flush mounted rectangular cavity slot antennas: theory and design. IEEE Trans. Antennas Propag. AP 15(3):342–251 (1967)

    Google Scholar 

  170. C.R. Cockrell, The input admittance of the rectangular cavity-backed slot antenna. IEEE Trans. Antennas Propag. AP 24(3):288–294 (1976)

    Google Scholar 

  171. J. Hirokawa, H. Arai, N. Goto, Cavity-backed wide slot antenna. IEE Proc. Microwave Antennas Propag. Pt. H. 136(1):29–33 (1989)

    Google Scholar 

  172. T. Lertwiriyaprapa, C. Phongcharoenpanich, M. Krairiksh, Characterization of the input impedance of a probe excited rectangular cavity-baked slot antenna, in Proceedings of 5th International Symposium on Antennas Propagation and EM Theory, Aug 2000, pp. 654–657

    Google Scholar 

  173. T. Lertwiriyaprapa, C. Phongcharoenpanich, S. Kosulvit, M. Krairiksh, Analysis of impedance characteristics of probe fed rectangular cavity-backed slot antenna. Proc. IEEE Int. Symp. Antennas Propag. 1, 576–579 (2001)

    Google Scholar 

  174. T. Lertwiriyaprapa, C. Phongcharoenpanich, M. Krairiksh, Analysis of radiation characteristics of probe fed rectangular cavity backed slot antenna with finite ground plane. Proc. IEEE Int. Symp. Antennas Propag. 2, 714–717 (2000)

    Google Scholar 

  175. J.Y. Lee, T.S. Horng, N.G. Alexopoulos, Analysis of cavity-backed aperture antenas with a dielectric overlay. IEEE Trans. Antennas Propag. 42(11), 1556–1562 (1994)

    ADS  Google Scholar 

  176. E.M. Biebl, G.L. Friedsam, Cavity-backed aperture antennas with dielectric and magnetic overlay. IEEE Trans. Antennas Propag. 43(11), 1226–1232 (1995)

    ADS  Google Scholar 

  177. H. Moheb, L. Shafai, J. Shaker, Numerical solution of radiation from single and multiple arbitrary apertures backed by a cavity, in Proceedings of IEEE International Symposium on Antennas Propagation, Chicago, USA, July 1992, pp. 61–64

    Google Scholar 

  178. M.D. Deshpande, C.J. Reddy, Electromagnetic scattering from a rectangular cavity recessed in a 3D conducting surface. Contractor Report 4697, NASA, Hampton, Verginia, Oct 1995

    Google Scholar 

  179. M. Omiya, T. Hikage, N. Ohno, K. Horiguchi, K. Itoh, Design of cavity-backed slot antennas using the finite-difference time-domain technique. IEEE Trans. Antennas Propag. 46(12), 1853–1858 (1998)

    ADS  Google Scholar 

  180. T. Hikage, M. Omiya, K. Itoh, Considerations on performance evaluation of cavity-backed slot antenna using the FDTD technique. IEEE Trans. Antennas Propag. 49(12), 1712–1717 (2001)

    ADS  Google Scholar 

  181. S.M. Rao, G.K. Gothard, D.R. Wilton, Application of finite-integral technique to electromagnetic scattering by two-dimensional cavity-backed aperture in a ground plane. IEEE Trans. Antennas Propag. 46(5):679–685 (1998)

    Google Scholar 

  182. G. Marrocco, S. Fari, F. Bardati. A hybrid FDTD-MoM procedure for the modelling of electromagnetic radiation from the cavity backed apertures, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 4, Boston, USA, 2001, pp. 302–305

    Google Scholar 

  183. S.V. Georgakopoulos, A.C. Polycarpou, C.A. Balanis, C. Birtcher, Analysis of coupling between cavity-backed slot antennas: FDTD, FEM and measurements, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 1, Orlando, USA, Aug 1999, pp. 582–585

    Google Scholar 

  184. J.M. Jin, J.L. Volakis, A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures. IEEE Trans. Antennas Propag. 39(1), 97–104 (1991)

    ADS  Google Scholar 

  185. J.M. Jin, J.L. Volakis, A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity. IEEE Trans. Antennas Propag. 39(11), 1598–1604 (1991)

    ADS  Google Scholar 

  186. J. Gong, J.L. Volakis, A.C. Woo, H.T.G. Wang, A hybrid finite element-boundary integral method for the analysis of cavity-backed antennas of arbitrary shape. IEEE Trans. Antennas Propag. 42(9), 1233–1242 (1994)

    ADS  Google Scholar 

  187. S. Baudou, P. Borderies, P. Combes, R. Mittra, Analysis of a conformal cavity backed patch antenna using hybrid FEM/MoM technique, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 2, Boston, USA, Aug 2001, pp. 354–357

    Google Scholar 

  188. C.J. Reddy, M.D. Deshpande, C.R. Cockrell, F.B. Beck, Analysis of three-dimensional cavity-backed aperture antennas using combined finite element method/method of moment/geometric theory of difraction technique. Technical paper 3548, NASA, Hampton, Verginia 23681–0001, Nov 1995

    Google Scholar 

  189. C.J. Reddy, M.D. Deshpande, C.R. Cockrell, F.B. Beck, Radiation characteristics of cavity-backed aperture antennas in finite ground plane using hybrid FEM/MoM/geometric theory of diffraction. IEEE Trans. Antennas Propag. 44(10), 1327–1333 (1996)

    ADS  Google Scholar 

  190. T.N. Chang, L.C. Kuo, M.L. Chuang, Coaxial-fed cavity-backed slot antenna. Microwave Opt. Tech. Lett. 14(5), 291–294 (1997)

    Google Scholar 

  191. R. Azaro, S. Caorsi, M. Donelli, G.L. Gragnani, A circuital approach to evaluating the electromagnetic field on rectangular apertures backed by rectangular cavities. IEEE Trans. Microwave Theory Technol. 50(10), 2259–2266 (2002)

    ADS  Google Scholar 

  192. Ansoft corporation (2004), Products. Available: http://www.ansoft.com/products/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudeb Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghosh, B., Sinha, S. ., Kartikeyan, M.V. (2014). Introduction. In: Fractal Apertures in Waveguides, Conducting Screens and Cavities. Springer Series in Optical Sciences, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-06535-9_1

Download citation

Publish with us

Policies and ethics