Skip to main content

Mirror Duality of Landau–Ginzburg Models via Discrete Legendre Transforms

  • Chapter
  • First Online:

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 15))

Abstract

We recall the semi-flat Strominger–Yau–Zaslow (SYZ) picture of mirror symmetry and discuss the transition from the Legendre transform to a discrete Legendre transform in the large complex structure limit. We recall the reconstruction problem of the singular Calabi–Yau fibres associated to a tropical manifold and review its solution in the toric setting. We discuss the monomial-divisor correspondence for discrete Legendre duals and use this to give a mirror duality for Landau Ginzburg models motivated from the SYZ perspective and Floer theory. We mention its application for the construction of mirror symmetry partners for varieties of general type and discuss the straightening of the boundary of a tropical manifold corresponding to a smoothing of the divisor in the complement of a special Lagrangian fibration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This means \(\mathcal{X}\) is flat over the base such that \(X = \mathcal{X}_{t_{0}}\) for some t 0 ≠ 0 and \(T \in \mathrm{ End}(H^{\bullet }(X, \mathbb{Q}))\), the monodromy operator around the special fibre at t = 0, satisfies (T − id)n+1 = 0 and (T − id)n+1 ≠ 0 with n = dimX.

  2. 2.

    This means \(h^{\bullet }(X,\mathcal{O}_{X}) = h^{\bullet }(S^{n}, \mathbb{Q})\) for n = dimX.

  3. 3.

    Confusingly in the discrete world (e.g. [17]), for a piecewise affine function on a polyhedral complex the notion strictly convex is used for the property where the maximal cells coincide with non-extendable domains of linearity of the function. This is actually the type of function we want.

  4. 4.

    It is possible to choose them holomorphic, in fact there is a natural choice.

  5. 5.

    This means it doesn’t contain a non-trivial linear subspace.

References

  1. M. Abouzaid, D. Auroux, L. Katzarkov, Mirror symmetry for blowups and hypersurfaces in toric varieties [arXiv:1205.0053]

    Google Scholar 

  2. M. Abreu, Kähler geometry of toric manifolds in symplectiv coordinates, in Symplectic and Contact Topology: Interactions and Perspectives, ed. by Y. Eliashberg, B. Khesin, F. Lalonde. Fields Institute Communications, vol. 35 (American Mathematical Society, Providence, 2003), pp. 1–24

    Google Scholar 

  3. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1978)

    Book  MATH  Google Scholar 

  4. D. Auroux, Mirror symmetry and T-duality in the complement of the anticanonical divisor. J. Gökova Geom. Topol. 1, 51–91 (2007)

    MathSciNet  MATH  Google Scholar 

  5. D. Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, in Surveys in Differential Geometry, vol. 13, ed. by H.D. Cao, S.T. Yau (International Press, Somerville, 2009), pp. 1–47

    Google Scholar 

  6. P. Berglund, T. Hübsch, A Generalized Construction of Mirror Manifolds [arXiv:hep-th/9201014]

    Google Scholar 

  7. L. Borisov, Berglund-Hubsch mirror symmetry via vertex algebras [arXiv:1007.2633]

    Google Scholar 

  8. P. Clarke, Duality for toric Landau-Ginzburg models [arXiv:0803.0447]

    Google Scholar 

  9. T. Bridgeland et al., Dirichlet Branes and mirror symmetry, in Clay Mathematics Monographs, ed. by M. Douglas, M. Gross (CMI/AMS publication, 2009), 681 pp.

    Google Scholar 

  10. K. Chan, N.C. Leung, On SYZ Mirror Transformations [arxiv.org:0808.1551v2]

    Google Scholar 

  11. K. Chan, S. Lau, N.C. Leung, SYZ mirror symmetry for toric Calabi-Yau manifolds [math/arXiv:1006.3830]

    Google Scholar 

  12. R. Castano-Bernard, D. Matessi, Lagrangian 3-torus fibrations. J. Differ. Geom. 81(3), 483–573 (2009)

    MathSciNet  MATH  Google Scholar 

  13. M. Carl, M. Pumperla, B. Siebert, A tropical view on Landau-Ginzburg models. Siebert’s webpage

    Google Scholar 

  14. A. Chiodo, Y. Ruan, LG/CY correspondence: The state space isomorphism. Adv. Math. 227(6), 2157–2188 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. A.C. da Silva, Symplectic Toric Manifolds. www.math.ist.utl.pt/acannas/Books/toric.pdf

  16. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction. AMS/IP Studies in Advanced Mathematics

    Google Scholar 

  17. W. Fulton, Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131 (Princeton University Press, Princeton, 1993) [MR 1234037, Zbl 0813.14039]

    Google Scholar 

  18. M. Gross, L. Katzarkov, H. Ruddat, Towards Mirror Symmetry for Varieties of General Type [arXiv:1202.4042]

    Google Scholar 

  19. Toric degenerations and Batyrev-Borisov duality. Math. Ann. 333(3), 645–688 (2005)

    Google Scholar 

  20. M. Gross, The Strominger-Yau-Zaslow conjecture: From torus fibrations to toric degenerations, in Proceedings of Symposia in Pure Mathematics (2008), 44 p. [arXiv:0802.3407]

    Google Scholar 

  21. M. Gross, Mirror symmetry for \(\mathbb{P}^{2}\) and tropical geometry [arXiv:0903.1378v2]

    Google Scholar 

  22. M. Gross, Mirror symmetry and the Strominger-Yau-Zaslow conjecture [arXiv:1212.4220]

    Google Scholar 

  23. M. Gross, B. Siebert, Affine manifolds, log structures, and mirror symmetry. Turk. J. Math. 27, 33–60 (2003)

    MathSciNet  MATH  Google Scholar 

  24. M. Gross, B. Siebert, Mirror symmetry via logarithmic degeneration data I. J. Differ. Geom. 72, 169–338 (2006)

    MathSciNet  MATH  Google Scholar 

  25. M. Gross, B. Siebert, Mirror symmetry via logarithmic degeneration data II. J. Algebr. Geom. 19, 679–780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Gross, B. Siebert, From real affine geometry to complex geometry. Ann. Math. 174, 1301–1428

    Google Scholar 

  27. V. Guillemin, Kaehler structures on toric varieties. J. Differ. Geom. 40, 285–309 (1994)

    MathSciNet  MATH  Google Scholar 

  28. N. Hitchin, The moduli space of special Lagrangian submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(4), 503–515 (1997)

    MathSciNet  MATH  Google Scholar 

  29. C. Haase, I. Zharkov, Integral affine structures on spheres and torus fibrations of Calabi-Yau toric hypersurfaces, I & II [math.AG/0205321, math.AG/0301222]

    Google Scholar 

  30. N.C. Leung, Mirror symmetry without corrections. Commun. Anal. Geom. 13(2), 287–331 (2005)

    Article  MATH  Google Scholar 

  31. G. Mikhalkin, Amoebas of Algebraic Varieties and Tropical Geometry [arXiv:math/0403015]

    Google Scholar 

  32. R.C. McLean, Deformations of calibrated submanifolds. Commun. Anal. Geom. 6(4), 705–747 (1998)

    MathSciNet  MATH  Google Scholar 

  33. J. Pascaleff, Floer cohomology in the mirror of the projective plane and a binodal cubic curve [arXiv:math/1109.3255]

    Google Scholar 

  34. H. Ruddat, Partielle Auflösung eines torischen log-Calabi-Yau-Raumes, in Diplomarbeit, A.-L. Universität Freiburg (2005). http://www.freidok.uni-freiburg.de/volltexte/6162

  35. H. Ruddat, Log Hodge groups on a toric Calabi-Yau degeneration, in Mirror Symmetry and Tropical Geometry. Contemporary Mathematics, vol. 527 (American Mathematical Society, Providence, 2010), pp. 113–164

    Google Scholar 

  36. H. Ruddat, B. Siebert, The ubiquity of Landau-Ginzburg models (in preparation)

    Google Scholar 

  37. A. Strominger, S.-T. Yau, E. Zaslow, Mirror Symmetry is T-Duality [arXiv:hep-th/9606040]

    Google Scholar 

  38. H.M. Tsoi, Cohomological Properties of Toric Degenerations of Calabi-Yau Pairs, Dissertation

    Google Scholar 

  39. I. Zharkov, Torus Fibrations of Calabi-Yau Hypersurfaces in Toric Varieties and Mirror Symmetry [arXiv:math/9806091]

    Google Scholar 

Download references

Acknowledgements

The author is indebted to Bernd Siebert, Denis Auroux and Mark Gross for what he learned from them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Ruddat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruddat, H. (2014). Mirror Duality of Landau–Ginzburg Models via Discrete Legendre Transforms. In: Castano-Bernard, R., Catanese, F., Kontsevich, M., Pantev, T., Soibelman, Y., Zharkov, I. (eds) Homological Mirror Symmetry and Tropical Geometry. Lecture Notes of the Unione Matematica Italiana, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-06514-4_9

Download citation

Publish with us

Policies and ethics