Skip to main content

Moduli Stacks of Bundles on Local Surfaces

  • Chapter
  • First Online:
Homological Mirror Symmetry and Tropical Geometry

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 15))

  • 1515 Accesses

Abstract

We give an explicit groupoid presentation of certain stacks of vector bundles on formal neighborhoods of rational curves inside algebraic surfaces. The presentation involves a Möbius type action of an automorphism group on a space of extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Ballico, E. Gasparim, Numerical invariants for vector bundles on blow-ups. Proc. Am. Math. Soc. 130, 23–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Ballico, E. Gasparim, Vector bundles on a neighborhood of an exceptional curve and elementary transformations. Forum Math. 15, 115–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Ballico, E. Gasparim, Vector bundles on a formal neighborhood of a curve in a surface. Rocky Mt. J. Math. 30, 795–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Ballico, E. Gasparim, T. Köppe, Vector bundles near negative curves: Moduli and local Euler characteristic. Commun. Algebra 37(8), 2688–2713 (2009)

    Article  MATH  Google Scholar 

  5. S. Barmeier, O. Ben-Bassat, E. Gasparim, Deformations of open surfaces and their stacks of vector bundles (in preparation)

    Google Scholar 

  6. O. Ben-Bassat, The topology of stacks of vector bundles on some curves and surfaces (in preparation)

    Google Scholar 

  7. O. Ben-Bassat, M. Temkin, Berkovich Spaces and Tubular Descent. Advances in Mathematics 234, 217–238 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Ben-Bassat, J. Block, T. Pantev, Non-commutative tori and Fourier–Mukai duality. Compos. Math. 143, 423–475 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Beauville, Y. Laszlo, Conformal blocks and generalized theta functions. Commun. Math. Phys. 164, 385–419 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. P.M. Cohn, Some remarks on projective free rings. Algebra Universalis 49(2), 159–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.-M. Drézet, Exotic fine moduli spaces of coherent sheaves, in Algebraic Cycles, Sheaves, Shtukas, and Moduli. Impanga Lecture Notes. Trends in Mathematics (Birkhäuser, Basel, 2008), pp. 21–32

    Google Scholar 

  12. E. Gasparim, Holomorphic bundles on \({\mathbb{o}^(-k)}\) are algebraic. Commun. Algebra 25, 3001–3009 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Gasparim, Rank two bundles on the blow-up of \(\mathbb{C}^{2}\). J. Algebra 199, 581–590 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Gasparim, Chern classes of bundles on blown-up surfaces. Commun. Algebra 28, 4912–4926 (2000)

    Article  MathSciNet  Google Scholar 

  15. E. Gasparim, The Atiyah–Jones conjecture for rational surfaces. Adv. Math. 218, 1027–1050 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Lange, Universal families of extensions. J. Algebra 83(1), 101–112 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Laumon, Champs algébriques. Prepublications 88–33, U. Paris-Sud (1988)

    Google Scholar 

  18. S. Mukai, On the moduli spaces of bundles on K3 surfaces, I, in Vector Bundles on Algebraic Varieties (Tata Institute of Fundamental Research, Bombay, 1984)

    Google Scholar 

  19. M.S. Narasimhan, S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve. Ann. Math. 101, 391–417 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Quillen, Projective modules over polynomial rings. Invent. Math. 36, 166–172 (1976)

    Article  MathSciNet  Google Scholar 

  21. N. Rydh, Noetherian approximation of algebraic spaces and stacks. http://arxiv.org/abs/0904.0227 (2009)

  22. C.S. Seshadri, Triviality of vector bundles over the affine space k 2. Proc. Natl. Acad. Sci. USA 44, 456–458 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  23. A.A. Suslin, Projective modules over polynomial rings are free. Dokl. Acad. Nauk. SSSR 229(5), 1063–1066 (1976)

    MathSciNet  Google Scholar 

  24. Y. Toda, Deformations and Fourier-Mukai transforms. J. Differ. Geom. 81(1), 197–224 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Edoardo Ballico, Andrew Kresch and Tony Pantev for helpful conversations we had while working on this project. We would like to thank the Universities of Haifa and Edinburgh, Marco Andreatta, Fabrizio Catanese, the University of Trento and Fondazione Bruno Kessler, the Isaac Newton Institute for Mathematical Sciences 2011 VBAC Conference, and the 2011 Mirror Symmetry and Tropical Geometry Conference in Cetraro, Italy for travel support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Ben-Bassat .

Editor information

Editors and Affiliations

Appendices

Appendix A: Some Cohomology Groups

The ring of global functions on \(\widehat{Z_{k}}\) is

$$\displaystyle{\mathcal{O}(\widehat{Z_{k}}) = \mathbb{C}[[x_{0},x_{1},\mathop{\ldots },x_{k}]]\bigl /\sum _{i=0}^{k-2}\sum _{ j=i+2}^{k}\bigl (x_{ i}x_{j} - x_{i+1}x_{j-1}\bigr )\text{,}}$$

and for \(Z_{k}^{(n)}\) one gets \(\mathcal{O}(Z_{k}^{(n)}) = \mathcal{O}(Z_{k})/m^{n+1}\) where m is the ideal \((x_{0},\ldots,x_{k})\). Note that here \(x_{i} = z^{i}u\) in terms of the original coordinates on U and U (n). The zeroth cohomology is the torsion-free \(\mathcal{O}(\widehat{Z_{k}})\) module

$$\displaystyle{H^{0}(\widehat{Z_{ k}},\mathcal{O}(s)) =\bigoplus _{\mathit{ki}+s-l\geq 0,l\geq 0,i\geq 0}\mathbb{C}z^{l}u^{i} \subset \mathcal{O}(\hat{U}).}$$

Similarly, we have the \(\mathcal{O}(Z_{k}^{(n)})\) module

$$\displaystyle{H^{0}(Z_{ k}^{(n)},\mathcal{O}(s)) =\bigoplus _{\mathit{ ki}+s-l\geq 0,l\geq 0,n\geq i\geq 0}\mathbb{C}z^{l}u^{i} \subset \mathcal{O}(U^{(n)}).}$$

Remark 8.

The set \(H^{0}(Z_{k}^{(n)},\mathcal{O}(s))\) is the \(\mathbb{C}\) points of the spectrum of the polynomial algebra freely generated over \(\mathbb{C}\) by variables indexed by pairs (l, i) such that \(\mathit{ki} + s - l \geq 0,l \geq 0,n \geq i \geq 0\). It is also easy to see that \(H^{1}(Z_{k}^{(n)},\mathcal{O}(s))\) vanishes for s ≥ 0.

Appendix B: The Cohomology Spectral Sequence of \(\mathcal{H}\mathbf{\mathit{om}}(E,F)\)

Consider a scheme Z covered by just two affine open sets U 1 and U 2 and two rank 2 vector bundles E and F on Z which trivialize on the U i . Assume also that \(H^{1}(Z,\mathcal{O}) = 0\). The Čech complex for computing the cohomology of \(\mathcal{H}\mathit{om}(E,F)\) on Z looks like

$$\displaystyle{\mathrm{Hom}_{U_{1}}(E\vert _{U_{1}},F\vert _{U_{1}})\oplus \mathrm{Hom}_{U_{2}}(E\vert _{U_{2}},F\vert _{U_{2}}) \rightarrow \mathrm{Hom}_{U_{1}\cap U_{2}}(E\vert _{U_{1}\cap U_{2}},F\vert _{U_{1}\cap U_{2}}).}$$

If we choose local trivializations for \(E\vert _{U_{1}},E\vert _{U_{2}}\) and \(F\vert _{U_{1}},F\vert _{U_{2}}\) then the complex becomes

$$\displaystyle{\mathrm{Hom}_{U_{1}}(\mathcal{O}^{\oplus 2},\mathcal{O}^{\oplus 2}) \oplus \mathrm{Hom}_{ U_{2}}(\mathcal{O}^{\oplus 2},\mathcal{O}^{\oplus 2}) \rightarrow \mathrm{Hom}_{ U_{1}\cap U_{2}}(\mathcal{O}^{\oplus 2},\mathcal{O}^{\oplus 2})}$$

with differential

$$\displaystyle{(A,B)\mapsto G_{E}A - BG_{F}}$$

where \(G_{E},G_{F}\) are the transition matrices of E and F. On the other hand suppose we know that E and F can be written on Z as extensions of line bundles L 2 by L 1. By choosing local splittings the Čech complex becomes

$$\displaystyle{\mathrm{End}_{U_{1}}(\mathcal{O}^{\oplus 2}) \oplus \mathrm{End}_{ U_{2}}(\mathcal{O}^{\oplus 2})\stackrel{D_{ 1}}{\rightarrow }\mathrm{End}_{U_{1}\cap U_{2}}(\mathcal{O}^{\oplus 2})}$$
$$\displaystyle{D_{1}(N_{1},N_{2}) = \left (\begin{array}{*{10}c} g_{1} & 0 \\ 0 &g_{2}\\ \end{array} \right )N_{1}-N_{2}\left (\begin{array}{*{10}c} g_{1} & 0 \\ 0 &g_{2}\\ \end{array} \right ),}$$
$$\displaystyle{D_{2}(M_{1},M_{2}) = \left (\begin{array}{*{10}c} g_{1} & p_{E} \\ 0 & g_{2}\\ \end{array} \right )M_{1}-M_{2}\left (\begin{array}{*{10}c} g_{1} & p_{F} \\ 0 & g_{2}\\ \end{array} \right ).}$$
$$\displaystyle{\ker (D_{1})\stackrel{\overline{D_{2}}}{\longrightarrow }\mathrm{coker}(D_{1})}$$

Let us compute the cohomology groups

$$\displaystyle{\ker (\overline{D_{2}}) = \mathrm{Hom}(E,F)\mathop{\cong}H^{0}(X,\mathcal{H}\mathit{om}(E,F))}$$

and

$$\displaystyle{\mathrm{coker}(\overline{D_{2}}) = \mathrm{Ext}^{1}(E,F)\mathop{\cong}H^{1}(X,\mathcal{H}\mathit{om}(E,F))}$$

in terms of the extension and cohomology groups of the L i . The filtration on \(\mathcal{H}\mathit{om}(E,F)\) reads

$$\displaystyle{0 \subset \mathcal{H}\mathit{om}(L_{2},L_{1}) \subset \mathcal{H}\mathit{om}(E,L_{1}) + \mathcal{H}\mathit{om}(L_{2},F) \subset \mathcal{H}\mathit{om}(E,F)}$$

with associated graded pieces \(\mathcal{H}\mathit{om}(L_{2},L_{1})\), \(\mathcal{E}\mathit{nd}(L_{1}) \oplus \mathcal{E}\mathit{nd}(L_{2})\), and \(\mathcal{H}\mathit{om}(L_{1},L_{2})\). The associated spectral sequence computing the cohomology \(\mathcal{H}\mathit{om}(E,F)\) has an E 1 term which looks like

The E 2 term looks like

The E 3 term looks like

The first differential we consider is

$$\displaystyle{H^{0}(X,\mathcal{O})^{\oplus 2} = \mathrm{End}(L_{ 1}) \oplus \mathrm{End}(L_{2})\stackrel{d_{1}^{1,-1}}{\rightarrow }\mathrm{Ext}^{1}(L_{ 2},L_{1}).}$$

It is the connecting map for the cohomology of the short exact sequence

$$\displaystyle\begin{array}{rcl} 0& \rightarrow & \mathcal{H}\mathit{om}(L_{2},L_{1}) \rightarrow \mathcal{H}\mathit{om}(L_{2},F) + \mathcal{H}\mathit{om}(E,L_{1}) {}\\ & \rightarrow & \mathcal{E}\mathit{nd}(L_{1}) \oplus \mathcal{E}\mathit{nd}(L_{2}) \rightarrow 0 {}\\ \end{array}$$

Consider the induced filtration on Hom(E, F) given by

$$\displaystyle{0 \subset \mathrm{Hom}(L_{2},L_{1}) \subset \mathrm{Hom}(E,L_{1}) + \mathrm{Hom}(L_{2},F) \subset \mathrm{Hom}(E,F).}$$

One has

$$\displaystyle{ \frac{\mathrm{Hom}(E,F)} {\mathrm{Hom}(E,L_{1}) + \mathrm{Hom}(L_{2},F)}\mathop{\cong}\text{ker}(d_{2}^{0,0}) \subset \mathrm{Hom}(L_{ 1},L_{2}),}$$

and

$$\displaystyle{\frac{\mathrm{Hom}(E,L_{1}) + \mathrm{Hom}(L_{2},F)} {\mathrm{Hom}(L_{2},L_{1})} \mathop{\cong}\text{ker}(d_{1}^{1,-1}) \subset H^{0}(X,\mathcal{O})^{\oplus 2}.}$$

For any choices of splittings

$$\displaystyle{\mathrm{Hom}(E,F)\stackrel{\psi }{\leftarrow }\text{ker}(d_{2}^{0,0}) \subset \mathrm{Hom}(L_{ 1},L_{2})}$$

and

$$\displaystyle{\mathrm{Hom}(E,L_{1}) + \mathrm{Hom}(L_{2},F)\stackrel{\phi }{\leftarrow }\text{ker}(d_{1}^{1,-1}) \subset H^{0}(X,\mathcal{O})^{\oplus 2}}$$

we get a decomposition

$$\displaystyle{ \mathrm{Hom}(E,F) = \mathrm{Hom}(L_{2},L_{1}) \oplus \phi (\text{ker}(d_{1}^{1,-1})) \oplus \psi (\text{ker}(d_{ 2}^{0,0})). }$$
(43)

We record formulas for \(d_{1}^{1,-1}\) and \(d_{2}^{0,0}\) in the case that \(X = Z_{k}^{(n)} \times T\) for some affine scheme T, \(L_{1} = \mathcal{O}(-j)\), \(L_{2} = \mathcal{O}(j)\), E = E p , \(F = E_{p^{{\prime}}}\).

$$\displaystyle{d_{1}^{1,-1}: H^{0}(X,(L_{ 1} \otimes L_{1}^{\vee }) \oplus (L_{ 2} \otimes L_{2}^{\vee })) \rightarrow \mathrm{Ext}^{1}(L_{ 2},L_{1})}$$

We compute

$$\displaystyle{\left (\begin{array}{*{10}c} z^{j}& p^{{\prime}} \\ 0 &z^{-j}\\ \end{array} \right )\left (\begin{array}{*{10}c} \underline{a}&0\\ 0 &\underline{d}\\ \end{array} \right )-\left (\begin{array}{*{10}c} \underline{a}&0\\ 0 &\underline{d}\\ \end{array} \right )\left (\begin{array}{*{10}c} z^{j}& p \\ 0 &z^{-j}\\ \end{array} \right ) = \left (\begin{array}{*{10}c} 0&\underline{d}p^{{\prime}}-\underline{ a}p \\ 0& 0\\ \end{array} \right ).}$$

Therefore the element of \(\mathrm{Ext}^{1}(L_{2},L_{1})\) to which the pair \((\underline{a},\underline{d})\) maps is represented by \((\underline{d}p^{{\prime}}-\underline{ a}p)\vert _{(U^{(n)}\cap V ^{(n)})\times T}\). The differential

$$\displaystyle\begin{array}{rcl} & & d_{1}^{1,-1}: H^{0}(X,\mathcal{O}^{\oplus 2}) \rightarrow \mathrm{Ext}^{1}(\mathcal{O}(j),\mathcal{O}(-j)) {}\\ & & \qquad \qquad (\underline{a},\underline{d})\mapsto \underline{d}p^{{\prime}}-\underline{ a}p. {}\\ \end{array}$$

In order to write down the next differential

$$\displaystyle{d_{2}^{0,0}: \mathrm{Hom}(\mathcal{O}(-j),\mathcal{O}(j)) \rightarrow \mathrm{Ext}^{1}(\mathcal{O}(j),\mathcal{O}(-j))/\text{image}(d_{ 1}^{1,-1})\text{,}}$$

we choose regular functions \(\alpha _{U},\delta _{U}\) on U and \(\alpha _{V },\delta _{V }\) on V such that

$$\displaystyle\begin{array}{rcl} -z^{-j}p^{{\prime}}\underline{c}_{ U}& =& \alpha _{U} -\alpha _{V } {}\\ z^{j}p\underline{c}_{ U}& =& \delta _{U} -\delta _{V } {}\\ \end{array}$$

so

$$\displaystyle{d_{2}^{0,0}(\underline{c}) =\delta _{ U}p^{{\prime}}-\alpha _{ V }p.}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ben-Bassat, O., Gasparim, E. (2014). Moduli Stacks of Bundles on Local Surfaces. In: Castano-Bernard, R., Catanese, F., Kontsevich, M., Pantev, T., Soibelman, Y., Zharkov, I. (eds) Homological Mirror Symmetry and Tropical Geometry. Lecture Notes of the Unione Matematica Italiana, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-06514-4_1

Download citation

Publish with us

Policies and ethics