Skip to main content

Applications of Genetic Algorithms in Chemical Engineering I: Methodology

  • Chapter
  • First Online:
Applications of Metaheuristics in Process Engineering

Abstract

The fascinating world of genes has been an inspiration for mankind. One such inspiration has led to a popular optimization technique, genetic algorithm (GA). Its inherent parallelism has enabled significant computational improvement over deterministic enumerations. Further, it has provided a flexibility of solving multiple objectives in a derivative-free environment. These advantages are extremely useful for solving optimization problems in chemical engineering, ranging over a wide variety of processes from the production of bulk chemicals to highly sophisticated specialty chemicals, their purification, control, planning, and scheduling. These systems are often associated with multiple objectives and complex model equations. Several variations of GA have been developed over the last four decades by incorporating ground-breaking concepts such as elitism, jumping gene, crowding distance, ranking, altruism, etc., to enable faster convergence of the algorithms. Continuous improvements are being made by the use of new or hybrid concepts so as to provide improved applicability and flexibility, and so as to exploit the rapidly increasing computational speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, A., Gupta, S.K.: Jumping gene adaptations of NSGA-II and their use in the multi-objective optimal design of shell and tube heat exchangers. Chem. Eng. Res. Des. 86, 123–139 (2008a)

    Article  Google Scholar 

  2. Agarwal, A., Gupta, S.K.: Multi-objective optimal design of heat exchanger networks using new adaptations of the elitist non-dominated sorting genetic algorithm, NSGA-II. Ind. Eng. Chem. Res. 47, 3489–3501(2008b)

    Article  Google Scholar 

  3. Beveridge, G.S.G., Schechter, R.S.: Optimization: Theory and Practice. McGraw Hill, New York (1970)

    MATH  Google Scholar 

  4. Bhat, S.A., Gupta, S., Saraf, D.N., Gupta, S.K.: On-line optimizing control of bulk free radical polymerization reactors under temporary loss of temperature regulation: an experimental study on a 1-liter batch reactor. Ind. Eng. Chem. Res. 45, 7530–7539 (2006)

    Article  Google Scholar 

  5. Bhat, S.A.: On-line optimizing control of bulk free radical polymerization of methyl methacrylate in a batch reactor using virtual instrumentation. Ph. D. Thesis, Indian Institute of Technology (2007)

    Google Scholar 

  6. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Blaisdell, Waltham (1969)

    Google Scholar 

  7. Chankong, V., Haimes, Y.V.: Multi-objective Decision Making-Theory and Methodology. Elsevier, New York (1983)

    Google Scholar 

  8. Charnes, A., Cooper, W.: Management Models and Industrial Applications of Linear Programming. Wiley, New York (1961)

    MATH  Google Scholar 

  9. Coello Coello, C.A., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  10. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (eds) Parallel Problem Solving from Nature, 4th Conference. Lecture Notes in Computer Science, pp. 839–848. Springer, Paris (2000)

    Google Scholar 

  11. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’2001), pp 283–290 (2001)

    Google Scholar 

  12. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  13. Deb, K.: Optimization for Engineering Design: Algorithms and Examples, 2nd edn. Prentice Hall of India, New Delhi (2004)

    Google Scholar 

  14. Deb, K., Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 9,115–148 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  16. Edgar, T.F., Himmelblau, D.M., Lasdon, L.S.: Optimization of Chemical Processes, 2nd edn. McGraw Hill, New York (2001)

    Google Scholar 

  17. Fonseca, C.M., Fleming, P.J.: Genetic algorithm for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the 5th International Conference on Genetic Algorithm, San Mateo, California, pp. 416–423 (1993)

    Google Scholar 

  18. Gadagkar, R.: Survival Strategies of Animals: Cooperation and Conflicts. Harvard University Press, Cambridge (1997)

    Google Scholar 

  19. Garg, S., Gupta, S.K.: Multi-objective optimization using genetic algorithm (GA). In: Pushpavanam, S. (ed.) Control and Optimization of Process Systems. Advances in Chemical Engineering, vol. 43, pp 205–245. Elsevier, New York (2013)

    Google Scholar 

  20. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, New York (1981)

    MATH  Google Scholar 

  21. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  22. Guria, C., Verma, M., Mehrotra, S.P., Gupta, S.K.: Multi-objective optimal synthesis and design of froth flotation circuits for mineral processing using the jumping gene adaptation of genetic algorithm. Ind. Eng. Chem. Res. 44, 2621–2633 (2005)

    Article  Google Scholar 

  23. Hajela, P., Lin, C.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4, 99–107 (1992)

    Article  Google Scholar 

  24. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  25. Horn, J.N., Nafpliotis, N., Goldberg, D.: A niched Pareto genetic algorithm for multiobjective optimization. In: Proceeding of the 1st IEEE Conference on Evolutionary Computation, vol. 1, pp. 82–87 (1994)

    Google Scholar 

  26. Jain, H., Deb, K.: An improved adaptive approach for elitist non-dominated sorting genetic algorithm for many-objective optimization. In: Proceeding of Evolutionary Mult-criterion Optimization, 7th International Conference. Lecture Notes in Computer Science, vol. 7811, pp. 307–321. Springer, Berlin (2013)

    Google Scholar 

  27. Kasat, R.B., Gupta, S.K.: Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using genetic algorithm (GA) with the jumping genes operator. Comp. Chem. Eng. 27, 1785–1800 (2003)

    Article  Google Scholar 

  28. Knowles, J.D., Corne, D.W.: The Pareto archived evolution strategy: a new baseline algorithm for multiobjective optimization. In: 1999 Congress on Evolutionary Computation, pp 98–105. IEEE Service Centre, Washington (1999)

    Google Scholar 

  29. Knowles, J.D., Corne, D.W.: Approximating the non-dominated front using the Pareto archived evolution strategy. Evol. Comput. 8, 149–172 (2000)

    Article  Google Scholar 

  30. Lapidus, L., Luus, R.: Optimal Control of Engineering Processes. Blaisdell, Waltham (1967)

    Google Scholar 

  31. Man, K. F., Chan, T. M., Tang, K.S., Kwong, S.: Jumping genes in evolutionary computing. In: The 30th Annual Conference of IEEE Industrial Electronics Society (IECON’04), Busan (2004)

    Google Scholar 

  32. McClintock, B.: The Collected Papers of Barbara McClintock. Garland, New York (1987)

    Google Scholar 

  33. Pareto, V.: Cours d’economie Politique. F. Rouge, Lausanne (1896)

    Google Scholar 

  34. Ramteke, M., Gupta, S.K.: Biomimicking altruistic behavior of honey bees in multi-objective genetic algorithm. Ind. Eng. Chem. Res. 48, 9671–9685 (2009a)

    Article  Google Scholar 

  35. Ramteke, M., Gupta, S.K.: Biomimetic adaptation of the evolutionary algorithm, NSGA-II-aJG, using the biogenetic law of embryology for intelligent optimization. Ind. Eng. Chem. Res. 48, 8054–8067 (2009b)

    Article  Google Scholar 

  36. Ray, W.H., Szekely, J.: Process Optimization with Applications in Metallurgy and Chemical Engineering. Wiley, New York (1973)

    Google Scholar 

  37. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering Optimization. Wiley, New York (1983)

    Google Scholar 

  38. Ripon, K.S.N., Kwong, S., Man, K.F.: A real-coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization. Inf. Sci. 177, 632–654 (2007)

    Article  MATH  Google Scholar 

  39. Sankararao, B., Gupta, S.K.: Multi-objective optimization of the dynamic operation of an industrial steam reformer using the jumping gene adaptations of simulated annealing. Asia-Pacific J. Chem. Eng. 1, 21–31 (2006)

    Google Scholar 

  40. Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithm. PhD Thesis, Vanderbilt University (1984)

    Google Scholar 

  41. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithm. In: Grenfenstett, J.J. (ed.) Proceeding of 1st International Conference on Genetic Algorithm and their Applications, pp. 93–100 (1985)

    Google Scholar 

  42. Simoes, A.B., Costa, E.: Transposition vs. crossover: an empirical study. In: Proceeding of GECCO-99, pp. 612–619. Morgan Kaufmann, Orlando (1999a)

    Google Scholar 

  43. Simoes, A.B., Costa, E.: Transposition: a biologically inspired mechanism to use with genetic algorithm. In: Proceeding of the 4th ICANNGA, pp 178–186. Springer, Portorez (1999b)

    Google Scholar 

  44. Srinivas, N., Deb, K.: Multiobjective function optimization using non-dominated sorting genetic algorithm. Evol. Comput. 2, 221–248 (1994)

    Article  Google Scholar 

  45. Sulfllow, A., Drechsler, N., Drechsler, R.: Robust multiobjective optimization in high dimensional spaces. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Proceeding of Evolutionary Multi-criterion Optimization, 4th International Conference. Lecture Notes in Computer Science, vol. 443, pp 715–726. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  46. Yang, X.S.: Nature-inspired Metaheuristic Algorithms. Luniver Press, Frome (2008)

    Google Scholar 

  47. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  48. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Gian nakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds) Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems (EUROGEN 2001), pp. 95–100 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, S.K., Ramteke, M. (2014). Applications of Genetic Algorithms in Chemical Engineering I: Methodology. In: Valadi, J., Siarry, P. (eds) Applications of Metaheuristics in Process Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-06508-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06508-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06507-6

  • Online ISBN: 978-3-319-06508-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics