Skip to main content

Accessory Phases in the Genesis of Igneous Rocks

  • Chapter
  • First Online:
Modelling of Magmatic and Allied Processes

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

An overview of the significance and application of most common accessory minerals in igneous systems, mainly in granitic rocks is  presented in two parts: (1) General description and definition of the most important accessory phases are given, and (2) a case study from Western Carpathians is dealt which unravels the granite typology. A short account of structure and composition of principal accessory phases is also discussed along with their occurrences, usage of isotopes and thermodynamic constraints which reveal the P-T evolution of parental igneous bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. Am Miner 73:714–726

    Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on Al-hornblende barometer. Am Miner 80:549–559

    Google Scholar 

  • Anovitz LM, Grew ES (1996) Mineralogy, petrology and geochemistry of boron: an introduction. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology, and geochemistry. Reviews in mineralogy, vol 33, pp 1–40

    Google Scholar 

  • Bačík P, Uher P (2010) Dissakisite-(La), mukhinite, and clinozoisite: (V, Cr, REE)-rich members of the epidote group in amphibole - Pyrite pyrrhotite metabasic rocks from Pezinok, Rybníček mine, Western Carpathians, Slovakia. Can Miner 48:523–536

    Google Scholar 

  • Balen D, Broska I (2011) Tourmaline nodules: products of devolatilization within the final evolutionary stage of granitic melt? vol 350, Geological Society, Special Publications, London, pp 53–68

    Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths: implications for the chemistry of crustal melts. J Petrol 37:521–532

    Google Scholar 

  • Bea F, Fershtater G, Corretgé LG (1992) The geochemistry of phosphorus in granite and the effect of aluminium. Lithos 29:43–45

    Google Scholar 

  • Beard JS, Sorensen SS, Gieré R (2006) REE zoning in allanite related to changing partition coefficients during crystallization: implications for REE behaviour in an epidote bearing tonalite. Miner Mag 70:419–435

    Google Scholar 

  • Belousova EA, Walters S, Griffin WL, O‘Reilly SY (2001) Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Aust J Earth Sci 48:603–619

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Pet 143:602–622

    Google Scholar 

  • Belousova EA, Griffin WL, O`Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J Petrol 47:329–353

    Google Scholar 

  • Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O`Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466

    Google Scholar 

  • Benisek A, Finger F (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib Miner Pet 114:441–451

    Google Scholar 

  • Berger A, Gnos E, Janots E, Fernandez A, Giese J (2008) Formation and composition of rhabdophane, bstnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem Geol 254:238–248

    Google Scholar 

  • Bingen B, Demaiffe D, Hertogen J (1996) Redistribution of rare earth elements, thorium and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: the role of apatite and monazite in orthogneisses from southwestern Norway. Geochim Cosmochim Ac 60:1341–1354

    Google Scholar 

  • Bónová K, Broska I, Petrík I (2010) Biotite from Čierna Hora Mountains granitoids (Western Carpathians, Slovakia) and estimation of water contents in granitoid melts. Geol Carpath 61:3–17

    Google Scholar 

  • Borodina NS, Fershtater GB, Votyakov SL (1999) The oxidation ratio of iron in coexisting biotite and hornblende from granitic and metamorphic rocks: the role of P, T, and f(O2). Can Miner 37:1423–1429

    Google Scholar 

  • Broska I, Uher P (1991) Regional typology of zircon and its relationship to allanite/monazite antagonism (on an example of Hercynian granitoids of Western Carpathians). Geol Carpath 42:271–277

    Google Scholar 

  • Broska I, Siman P (1998) The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. Geol Carpath 49:161–167

    Google Scholar 

  • Broska I, Petrík I, Wiliams T (2000) Co-existing monazite-(Ce) and allanite-(Ce) from S-type granitoids (on the example of the Tribeč Mts. Western Carpathians). Am Miner 85:22–32

    Google Scholar 

  • Broska I, Uher P (2001) Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geol Carpath 52(2):79–90

    Google Scholar 

  • Broska I, Williams CT, Uher P, Konečný P, Leichmann J (2004) The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chem Geol 205:1–15

    Google Scholar 

  • Broska I, Williams CT, Janák M, Nagy G (2005) Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos 82:71–83

    Google Scholar 

  • Broska I, Harlov D, Tropper P, Siman P (2007) Formation of magmatic titanite and titanite—ilmenite phase relations during granite alteration in the Tribeč Mountains, Western Carpathians, Slovakia). Lithos 95:58–71

    Google Scholar 

  • Broska I, Petrík I (2011) Accessory Fe-Ti oxides in the West-Carpathian I-type granitoids: witnesses of the granite mixing and late oxidation processes. Miner Pet 102:87–97

    Google Scholar 

  • Broska I, Petrík I, Uher P (2012) Accessory minerals of the Carpathian granitic rocks. Veda Publishiong House, Slovak Academy of Sciences, Bratislava, p 235

    Google Scholar 

  • Broska I, Petrík I, Shlevin ZB, Majka M, Bezák V (2013) Devonian/Mississipian  I-type granitoids in the Western Carpathians: a subduction-related hybrid magmatism. Lithos 162–163:27–36

    Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Google Scholar 

  • Buda G, Nagy G (1995) Some REE-bearing accessory minerals in two types of Variscan granitoids, Hungary. Geol Carpath 46(2):67–78

    Google Scholar 

  • Budzyń B, Hetherington CJ, Williams ML, Jercinovic MJ, Michalik M (2010) Fluid -mineral interactions and constraints on monazite alteration during metamorphism. Mineral Magaz 74:659–681

    Google Scholar 

  • Buriánek D, Novák M (2007) Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: examples from the Bohemian Massif, Czech Republic. Lithos 95:148–164

    Google Scholar 

  • Carswell DA, Wilson RN, Zhai M (1996) Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China. Mineral Mag 60:461–471

    Google Scholar 

  • Castro A, Moreno-Ventas I, De la Rosa JD (1991) H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth Sci Rev 31:237–253

    Google Scholar 

  • Catlos EJ, Sorensen SS, Harrison TM (2000) Th-Pb ion-microprobe dating of allanite. Am Mineral 85:548–633

    Google Scholar 

  • Cavosie AJ, Kita NT, Valley JW (2009) Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am Mineral 94:926–934

    Google Scholar 

  • Chappell BW, White AJR (1998) Development of P-rich granites by sequential restite fractionation and fractional crystallization: the Koetong Suite in the Lachlan fold belt. Acta Univ Car Geol 42:23–27

    Google Scholar 

  • Cherniak DJ, Watson EB (2000) Pb diffusion in zircon. Chem Geol 172:5–24

    Google Scholar 

  • Chesner CA, Ettlinger AD (1989) Composition of volcanic allanite from the Toba tuffs, Sumatra, Indonesia. Am Mineral 74:750–758

    Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) In: Hanchar JM and Hoskin PWO (eds) Reviews in mineralogy and geochemistry, v 53, pp 468–500

    Google Scholar 

  • Czamanske GK, Mihálik P (1972) Oxidation during magmatic differentiation, Finnmarka Complex, Oslo area, Norway: part I, the opaque oxides. J Petrol 13:493–509

    Google Scholar 

  • Czamanske GK, Wones DR (1973) Oxidation during magmatic differentiation, Finnmarka Complex, Oslo area, Norway: part 2, the mafic silicates. J Petrol 14:349–380

    Google Scholar 

  • Davidson C, Rosenberg C, Schmidt SM (1996) Synmagmatic folding of the base of the Bergell pluton, Central Alps. Tectonophysics 265:213–238

    Google Scholar 

  • Enami M, Suzuki K, Liou JG, Bird DK (1993) Al-Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence. Eur J Mineral 5:219–231

    Google Scholar 

  • Ewart A, Hildreth W, Carmichael ISE (1975) Quaternary acid magma in New Zealand. Contrib Miner Petrol 51:1–27

    Google Scholar 

  • Fielding PE (1970) The distribution of uranium, rare earth and color centers in a crystal of natural zircon. Am Mineral 55:429–440

    Google Scholar 

  • Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals. In: Hanchar JM, Hoskin PWO (eds) Reviews in mineralogy and geochemistry, vol 53, pp 1–25

    Google Scholar 

  • Finger F, Broska I, Roberts M, Schermeier A (1998) Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. Am Mineral 83:248–258

    Google Scholar 

  • Finger F, Broska I, Haunschmid B, Hraško Ľ, Kohút M, Krenn E, Petrík I, Riegler G, Uher P (2003) Electron microprobe dating of monazites from Western Carpathian basement granitoids: plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. Int J Earth Sci (Geol. Rundsch.) 92:86–98

    Google Scholar 

  • Finger F, Krenn E (2007) Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a P-T loop. Lithos 95:115–125

    Google Scholar 

  • Fowler A, Prokoph A, Stern R, Dupuis C (2002) Organization of oscillatory zoning in zircon: analysis, scaling, geochemistry, and model of a zircon from Kipawa, Quebec, Canada. Geochim Cosmochim Ac 66:311–328

    Google Scholar 

  • Förster H-J (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzebirge—Fichtelgebirge region, Germany, part I: the monazite-(Ce)—brabantite solid solution series. Am Mineral 83:259–272

    Google Scholar 

  • Förster H-J, Harlov DE (1999) Monazite-(Ce)—huttonite solid solutions in granulite-facies metabasites from the Ivre-Verbano zone, Italy. Mineral Mag 63:587–594

    Google Scholar 

  • Franz G, Spear FS (1985) Aluminous titanite (sphene) from the eclogite zone, south central Tauern window, Austria. Chem Geol 50:33–46

    Google Scholar 

  • Franz G, Liebscher A (2004) Physical and chemical properties of the epidote minerals—an introduction. In: Liebscher A, Franz G (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America, pp 1–82

    Google Scholar 

  • Frýda J, Breiter K (1995) Alkali feldspars as a main phosphorus reservoir in rare-metal granites: three examples from the Bohemian Massif (Czech Republic). Terra Nova 7:315–320

    Google Scholar 

  • Garver JI, Kamp PJJ (2002) Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps, New Zealand. Tectonophysics 349:203–219

    Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, Bronswijk W, Schleiche H (2003) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513

    Google Scholar 

  • Ghiorso MS, Sack RO (1991) Fe-Ti oxide geothermobarometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contrib Miner Petrol 108:485–510

    Google Scholar 

  • Ghiorso MS, Evans BW (2009) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039

    Google Scholar 

  • Gieré R, Sorensen SS (2004) Allanite and other REE-rich epidote minerals. In: Liebscher A, Franz G (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America, pp 431–493

    Google Scholar 

  • Green TH, Watson EB (1982) Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular references to “orogenic” rock series. Contrib Mineral Petrol 79:96–105

    Google Scholar 

  • Grew ES, Essene EJ, Peacor DR, Su Sh-Ch, Asami M (1991) Dissakisite-(Ce), a new member of the epidote group and the Mg analogue of allanite-(Ce), from Antarctica. Am Mineral 76:1990–1997

    Google Scholar 

  • Grey IE, Reid AF (1975) The structure of pseudorutile and its role in the natural alteration of ilmenite. Am Mineral 60:898–906

    Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O`Reilly SY, Xu X, Zhou X (2002) Zircon chemitry and magma genesis, SE China: in situ analysis of Hf isotopes, Pingtan and Tonglu igneous complex. Lithos 61:237–269

    Google Scholar 

  • Gromet LP, Silver LT (1983) Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochim Cosmochim Acta 47:925–939

    Google Scholar 

  • Halden NM, Hawthorne FC (1993) The fractal geometry of oscilatory zoning in crystals: application to zircon. Am Mineral 78:1113–1116

    Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson B, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680

    Google Scholar 

  • Harlov DE, Förster H-J (2003) Fluid-induced nucleation of (Y-REE)-phosphate minerals within apatite: nature and experiment part II. Fluorapatite. Am Mineral 88:1209–1229

    Google Scholar 

  • Harlov D, Tropper P, Seifert W, Nijland T, Förster H-J (2006) Formation of Al-rich titanite (CaTiSiO4O-CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2. Lithos 88:72–84

    Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Petrol 84:66–72

    Google Scholar 

  • Harrison TM, Watson EB (1984) The behaviour of apatite during crystal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Ac 48:1467–1477

    Google Scholar 

  • Harrison TM, McKeegan KD, LeFort P (1995) Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating: crystallization age and tectonic implications. Earth Planet Sci Lett 133:271–282

    Google Scholar 

  • Heaman LM, Bowins R, Crocket J (1990) The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim Cosmochim Acta 54:1597–1607

    Google Scholar 

  • Heinrich W, Andrehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15:3–16

    Google Scholar 

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral 70:1–15

    Google Scholar 

  • Henry DJ, Novák M, Hawtorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of tourmaline—supergroup minerals. Am Mineral 96:895–913

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Google Scholar 

  • Holtstam D, Andersson UB, Mansfeld J (2003) Feriallanite-(Ce) from the Bastnäs deposit, Västmanland, Sweden. Can Mineral 41:1233–1240

    Google Scholar 

  • Hoskin PWO (2000) Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochim Cosmochim Ac 64:1905–1923

    Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith Igneous zircon. J Metamorph Geol 18:423–439

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) In: Hanchar JM, Hoskin PWO (eds) Reviews in mineralogy and geochemistry, vol 53, pp 27–62

    Google Scholar 

  • Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). In: Reviews of mineralogy and geochemistry, vol. 48, pp 1–12

    Google Scholar 

  • Ishihara S (1977) The magnetite series and ilmenite-series granitic rocks. Min Geol 27:293–305

    Google Scholar 

  • Janots E, Brunet F, Goffé B, Poinssot C, Burchard M, Cemič L (2007) Thermochemistry of monazite-(La) and dissakisite-(La): Implications for monazite and allanite stability in metapelites. Contrib Miner Petrol 154:1–14

    Google Scholar 

  • Jiang SY, Palmer MR (1998) Boron isotope systematics of tourmaline from granites and pegmatites; a synthesis. Eur J Mineral 10:1253–1265

    Google Scholar 

  • Jiang SI, Radvanec M, Nakamura E, Palmer M, Kobavashi K, Zhao HX, Zhao KD (2008) Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: constraints on magmatic and metamorphic fluid evolution. Lithos 106:1–11

    Google Scholar 

  • Kempe U, Gruner T, Renno AD, Wolf D, René M (2004) Discussion on Wang et al.(2000) ‘Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites, Eastern China’, Mineral Mag 64:867–877. Mineral Mag 68:669–675

    Google Scholar 

  • Klemm DD, Henckel J, Dehm R, Von Gruenewaldt G (1985) The geochemistry of titanomagnetite in magnetite layers and their host rocks of the Eastern Bushveld complex. Econ Geol 80:1075–1088

    Google Scholar 

  • Kohút M, Putiš M, Ondrejka M, Sergeev S, Larionov A, Paderin I (1999) Sr and Nd isotope geochemistry of Hercynian granitic rocks from the Western Carpathians—implications for granite genesis and crustal evolution. Geol Carpath 50:477–487

    Google Scholar 

  • Kohút M, Uher P, Putiš M, Ondrejka M, Sergeev S, Larionov A, Paderin I (2009) SHRIMP U-Th-Pb zircon dating of the granitoid massifs in the Malé Karpaty Mountains (Western Carpathians): evidence of the Meso-Hercynian successive S- to I-type granitic magmatism. Geol Carpath 60:345–350

    Google Scholar 

  • Kubiš M, Broska I (2010) The granite system near Betliar village (Gemeric Superunit, Western Carpathians): evolution of a composite silicic reservoir. J Geosci 55(2010):131–148

    Google Scholar 

  • Kumar S (1995) Microstructural evidence of magma quenching inferred from enclaves hosted in the Hodruša granodiorites, Western Carpathians. Geol Carpath 46:379–382

    Google Scholar 

  • Kumar S (2010) Magnetite and ilmenite series granitoids of Ladakh batholith, Northwest Indian Himalaya: implications on redox conditions of subducted zone magmatism. Curr Sci 99:1260–1264

    Google Scholar 

  • Liou JG (1973) Synthesis and stability relations of epidote Ca2Al2FeSi3O12(OH). J Petrol 14:381–413

    Google Scholar 

  • London D, Černý P, Loomis JL, Pan JJ (1990) Phosphorus in alkali feldspars of rare-element granitic pegmatites. Canad Mineral 28:771–786

    Google Scholar 

  • London D (1992) Phosphorus in S-type magmas: the P2O5 content of feldspars from peraluminious granites, pegmatites and rhyolites. Am Mineral 77:126–145

    Google Scholar 

  • London D, Manning DAC (1995) Chemical variation and significance of tourmaline from Southwest England. Econ Geol 90:495–519

    Google Scholar 

  • London D, Wolf MB, Morgan GB, Garrido MG (1999) Experimental silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos, Badajoz, Spain. J Petrol 40:215–240

    Google Scholar 

  • Majka J, Budzyń B (2006) Monazite breakdown in metapelites from Wedel Jarlsberg land, Svalbard—preliminary report. Mineralogia Polonica 37:61–69

    Google Scholar 

  • McNear E, Vincent MG, Parthe E (1976) The crystal structure of vuagnatite, CaAl(OH)SiO4. Am Mineral 61:831–838

    Google Scholar 

  • Michael PJ (1988) Partition coefficients for rare earth elements in mafic minerals of high silica rhyolites: the importance of accessory mineral inclusions. Geochim Cosmochim Ac 52:275–282

    Google Scholar 

  • Michalik J, Skublicki Ł (1998) Breakdown of monazite during alterations of the High Tatra granitoids. Polskie Towarzystwo Mineralogiczne—Prace Specjalne 11:145–147 (in Polish)

    Google Scholar 

  • Michalik M, Popczyk R, Kusiak M, Paszkowski M (2000) Xenotime zircon intergrowths in the Western Tatra leucogranites. Polskie Towarzystwo Mineralogiczne-Prace Specjalne. Mineral Soc Poland-Special Papers 17:249–251

    Google Scholar 

  • Miller CF, Mittlefeldt DW (1982) Depletion of rare-earth elements in felsic magmas. Geology 10:129–133

    Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409:178–181

    Google Scholar 

  • Montel J-M (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146

    Google Scholar 

  • Montel J-M, Foret S, Veschambre M, Nichollet Ch, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Google Scholar 

  • Nabelek P, Russ-Nabelek C, Denison JR (1992) The generation and crystallization of Proterozoic Harney Peak leucogranite, Black Hills, South Dakota, USA: petrologic and geochemical constrains. Contrib Mineral Petrol 110:173–191

    Google Scholar 

  • Nagy G, Draganits E, Demény A, Pantó Gy, Árkai P (2002) Genesis and transformations of monazite, florncite and rhabdophane during medium grade metamorphism: examples from the Sopron Hills, Eastern Alps. Chem Geol 191:25–46

    Google Scholar 

  • Nakada S (1991) Magmatic processes in titanite-bearing dacites, central Andes of Chile and Bolivia. Am Mineral 76:548–560

    Google Scholar 

  • Nasdala L, Hanchar JM, Kronz A, Whitehouse MJ (2005) Long-term stability of alpha particle damage in natural zircon. Chem Geol 220:83–103

    Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) Alteration of radiation-damaged zircon and the related phenomenon of deficient electron microprobe totals. Geochim Cosmochim Ac 73:1637–1650

    Google Scholar 

  • Noyes HJ, Wones DR, Frey A (1983) A tale of two pluons: petrographic and mineralogical constraints on the petrogenesis of the Red Lake and Eagle Peak plutons, central Sierra Nevada. J Geol 91:353–379

    Google Scholar 

  • Ondrejka M, Uher P, Pršek J, Ozdín D (2007) Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: composition and substitutions in the (REE, Y)XO4 system (X = P, As, Si, Nb, S). Lithos 95:116–129

    Google Scholar 

  • Ondrejka M, Uher P, Putiš M, Broska I, Bačík P, Konečný P, Schmiedt I (2012) Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: an example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos 142–143:245–255

    Google Scholar 

  • Pan Y (1997) Zircon- and monazite-forming metamorphic reactions at Manitouwadge, Ontario. Can Mineral 35:105–118

    Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanism and controlling factor. Rev Mineral Geochem 48:13–49

    Google Scholar 

  • Parrish RR (1990) U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450

    Google Scholar 

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–179

    Google Scholar 

  • Petrík I (1999) Allanite vs. monazite in granitoid magmas: the role of water and REE content. Berichte der Deutschen mineralogischen Gesselschaft. Beihefte zum. Eur J Mineral 11:176

    Google Scholar 

  • Petrík I, Broska I (1994) Petrology of two granite types from the Tribeč Mountains, Western Carpathians: an example of allanite (+ magnetite) versus monazite dichotomy. Geol J 29:59–78

    Google Scholar 

  • Petrík I, Broska I, Lipka J, Siman P (1995) Granitoid allanite-(Ce): Substitution relations, redox conditions and REE distributions (on example of I-type granitoid, Western Carpathians, Slovakia). Geol Carpath 46:79–94

    Google Scholar 

  • Petrík I, Konečný P, Kováčik M, Holický I (2006) Electron microprobe dating of monazite from the Nizke Tatry Mountains orthogneisses (Western Carpathians, Slovakia). Geol Carpath 57:227–242

    Google Scholar 

  • Petrík I, Konečný P (2009) Metasomatic emplacement of inherited metamorphic monazite in a biotite-garnet granite from the Nízke Tatry Mountains, Western Carpathians, Slovakia: chemical dating and evidence for disequilibrium melting. Am Mineral 94:957–974

    Google Scholar 

  • Petrík I, Kubiš M, Konečný P, Broska I, Malachovský P (2011) Rare phosphates from the Surovec topaz – Li-mica microgranite, Gemeric unit, Western Carpathians, Slovakia: the role of the F/H2O in the melt. Can Mineral 49:521–540

    Google Scholar 

  • Piccoli P, Candela P (1994) Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas. Am J Sci 294:92–135

    Google Scholar 

  • Pichavant M (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapour pressure. Geological applications. Contrib Miner Petrol 76:430–439

    Google Scholar 

  • Pichavant M, Montel JM, Richard LR (1992) Apatite solubility in peraluminous liquids: experimental data and an extension of the Harrison-Watson model. Geochim Cosmochim Ac 56:3855–3861

    Google Scholar 

  • Poitrasson F (2002) In situ investigations of allanite hydrothermal alteration: examples from calc-alkaline and anorogenic granites of Corsica. Contrib Mineral Petrol 142:485–500

    Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Miner Petrol 73:207–220

    Google Scholar 

  • Pupin JP (2000) Granite genesis related to geodynamics from Hf-Y in zircon. Trans R Soc Edinb Earth Sci 91:245–256

    Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107

    Google Scholar 

  • Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Miner Petrol 94:304–316

    Google Scholar 

  • Ribbe PH (ed) (1980) Titanite. Orthosilicates. Reviews in mineralogy, vol 5. Mineralogical Society of America, pp 137–155

    Google Scholar 

  • Ripp GC, Karmanov NS, Kanakin SV, Doroshkevich AG (2002) Allanites of Wetsern Transbaikalia. Proc RMS (Zapisky vsesoyuznogo mineralogicheskogo obshchestva) 4:92–106 (in Russian)

    Google Scholar 

  • Robinson DM, Miller CF (1999) Record of magma chamber processes preserved in accessory mineral assemblages, Aztec Wash pluton, Nevada. Am Mineral 84:1346–1353

    Google Scholar 

  • Sakoma EM, Martin RF (2002) Oxidation-induced postmagmatic modifications of primary ilmenite, NYG-related aplite, Tibchi complex, Kalato, Nigeria. Mineral Mag 66:591–604

    Google Scholar 

  • Samson IM, Sinclair WD (1992) Magmatic hydrothermal fluids and the origin of quartz-tourmaline orbicles in the Seagull Batholith, Yukon Territory. Can Mineral 30:937–954

    Google Scholar 

  • Sato M, Wright TL (1966) Oxygen fugacity directly measured in volcanic gases. Science 153:1103–1105

    Google Scholar 

  • Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite-ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. J Petrol 49:1161–1185

    Google Scholar 

  • Sawka WN, Chappell BW, Norrish K (1984) Light-rare-earth element zoning in sphene and allanite during granitoid fractionation. Geology 12:131–134

    Google Scholar 

  • Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmas. J Petrol 36:663–705

    Google Scholar 

  • Sha LK, Chappell BW (2000) Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim Cosmochim Acta 63:3861–3881

    Google Scholar 

  • Schatz OJ, Dolejš D, Stix J, Williams-Jones AE, Layne GD (2004) Partitioning of boron among melt, brine and vapor in the system haplogranite–H2O–NaCl at 800°C and 100 MPa. Chem Geol 210:135–147

    Google Scholar 

  • Shearer CK, Papike JJ, Laul JC (1987) Mineralogical and chemical evolution of a rare-element granite–pegmatite system: Harney Peak Granite, Black Hills, South Dakota. Geochim Cosmochim Ac 51:473–486

    Google Scholar 

  • Schmidt MW, Thompson AB (1996) Epidote in calc-alkaline magmas: an experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. Am Mineral 81:462–474

    Google Scholar 

  • Schmidt MW, Poli S (2004) Magmatic epidote. In: Liebscher A, Franz G (eds) Epidotes. Reviews in mineralogy and geochemistry, vol 56. Mineralogical Society of America, pp 399–430

    Google Scholar 

  • Simpson DR (1977) Aluminium phosphate variants of feldspar. Am Mineral 62:351–355

    Google Scholar 

  • Spear FS, Pyle JM (2002) Phosphates in metamorphic rocks. In: Kohn ML, Rakovan J, Hughes JM (eds) Phosphates, Reviews in mineralogy, vol 48. Mineralogical Society of America, pp 293–335

    Google Scholar 

  • Suzuki K, Adachi M (1991) Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon, and xenotime. Geochem J 25:357–376

    Google Scholar 

  • Thomas R, Förster H-J, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolve tin-granite magmas: a melt/fluid-inclusion study. Contrib Miner Petrol 148:582–601

    Google Scholar 

  • Tropper P, Manning CE, Essene EJ (2002) The substitution of Al and F in titanite at high pressure and temperature: experimental constraints on phase relations and solid solution properties. J Petrol 43:1787–1814

    Google Scholar 

  • Trumbull RB, Krienitz MS, Gottesmann B, Wiedenbeck M (2008) Chemical and boron-isotope variations in tourmalines from a S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia. Contrib Mineral Petrol 155:1–18

    Google Scholar 

  • Turner MB, Cronin SJ, Stewart RB, Bebbington M, Smith IEM (2008) Using titanomagnetite texture to elucidate volcanic eruption histories. Geology 36:31–34

    Google Scholar 

  • Uher P, Puskharev Y (1994) Granitic pebbles of the Cretaceous flysh of the Pieniny Klippen belt, Western Carpathians: U/Pb zircon ages. Geol Carpath 45:375–378

    Google Scholar 

  • Uher P, Broska I (1996) Post-orogenic Permian granitic rocks in the Western Carpathian-Pannonian area: geochemistry, mineralogy and evolution. Geol Carpath 47:311–321

    Google Scholar 

  • Uher P, Černý P (1998) Zircon in Hercynian granitic pegmatites of the Western Carpathians, Slovakia. Geol Carpath 49:261–270

    Google Scholar 

  • Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206

    Google Scholar 

  • Vavra G (1990) On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contrib Miner Petrol 106:90–99

    Google Scholar 

  • Vavra G (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contrib Mineral Petrol 117:331–344

    Google Scholar 

  • Vavra G, Gebauer D, Schmidt R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase late carboniferous to triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Miner Petrol 122:337–358

    Google Scholar 

  • Watson EB, Capobianco CJ (1981) Phosphorus and rare earth elements in felsic magmas. An assesment of the role of apatite. Geochim Cosmochim Ac 45:2349–2358

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revised: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Google Scholar 

  • Whalen JB, Chappell BW (1988) Opaque mineralogy and mafic mineral chemistry of I- and Stype granites of the Lachlan fold belt, southeast Australia. Am Mineral 73:281–296

    Google Scholar 

  • White T, Ferraris C, Kim J, Madhavi S (2005) Apatite—an adaptive framework structure. In: Ferraris G, Merlino S (eds) Reviews in mineralogy and Geochemistry, vol 57, pp 307–401

    Google Scholar 

  • Wing BA, Ferry JM, Harrison TM (2003) Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contrib Mineral Petrol 145:228–250

    Google Scholar 

  • Wolf MB, London D (1994) Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanism. Geochim Cosmochim Ac 58:4127–4145

    Google Scholar 

  • Wolf MB, London D (1995) Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: differential apatite, monazite, and xenotime solubilities during anatexis. Am Mineral 80:765–775

    Google Scholar 

  • Wones DR (1989) Significance of the assemblage titanite+magnetite+quartz in granitic rocks. Am Mineral 74:744–749

    Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory and application. Am Mineral 50:1228–1272

    Google Scholar 

  • Zen E-an, Hammarstrom JM (1984) Magmatic epidote and its petrological significance. Geology 12:515–518

    Google Scholar 

Download references

Acknowledgments

Grant agency Vega (project 2/0060/10 and 2/0159/13) and APVV (project 080-11) are thanked for financial support. Santosh Kumar is thanked for thoughtful review and thorough editorial work. Figures 2, 4, 5, 6, 8 and 11 are published with kind permission of the Veda Publishing House (Broska et al. 2012)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Broska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Broska, I., Petrík, I. (2014). Accessory Phases in the Genesis of Igneous Rocks. In: Kumar, S., Singh, R. (eds) Modelling of Magmatic and Allied Processes. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06471-0_6

Download citation

Publish with us

Policies and ethics