Skip to main content

Models for Quantifying Mantle Melting Processes

  • Chapter
  • First Online:
Modelling of Magmatic and Allied Processes

Part of the book series: Society of Earth Scientists Series ((SESS))

  • 1378 Accesses

Abstract

Partial melting of mantle and crustal rocks is an important process for the genesis of a suite of igneous rocks seen at the surface of the earth. These rocks preserve the imprints of the complex physico-chemical processes in the earth’s interior in the form of their distinct end-member geochemical and isotopic compositions. Spatial and temporal variations in temperature, pressure, fluid mass and concentration of chemical species basically control the petrological property of rocks. This chapter describes basic framework of petrological modelling approach to quantify the deeper processes. Most frequently used equations for geotherm construction for continental and oceanic lithosphere, degree of partial melting and its distribution with depth due to perturbation in geotherms, partition of trace elements and radioactive elements in various partial melting models, crustal evolution and chemical geodynamics models are presented with their derivations.

Claude Allegre stubbornly passed on to his students the habit of turning his perception of any geological process into equations that could eventually be tested against measurements….

Albarede (1995)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun IA (eds) (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications

    Google Scholar 

  • Ahren JL, Turcotte DL (1979) Magma migration beneath an ocean ridge. Earth Planet Sci Lett 45:115–122

    Article  Google Scholar 

  • Albarede F (1995) Introduction to geochemical modeling. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Allegre CJ, Lewin E (1995a) Scaling laws and geochemical distributions. Earth Planet Sci Lett 132:1–13

    Article  Google Scholar 

  • Allegre CJ, Lewin E (1995b) Isotropic systems and stirring times in the earth’s mantle. Earth Planet Sci Lett 136:629–646

    Article  Google Scholar 

  • Asimov PD, Hirschmann MM, Stolper EM (1997) An analysis of variations in isentropic melt productivity. Phil Trans Roy Soc Lond A355:255–281

    Article  Google Scholar 

  • Dobran F (2001) Volcanic eruptions: mechanisms in material transport. Kluwer Acadamic/Plenum Publishers, New York

    Google Scholar 

  • Ellam RM (1992) Lithospheric thickness as a control of basalt geochemistry. Geology 20:153–156

    Article  Google Scholar 

  • Foucher JP, PichonX Le, Sibuet JC (1982) The ocean-continent transition in the uniform lithospheric stretching model: role of partial melting in the mantle. Phil Trans Roy Soc Lond A305:27–43

    Article  Google Scholar 

  • Ganguly J (2005) Adiabatic decompression and melting of mantle rocks: an irreversible thermodynamic analysis. Geophys Res Lett 32:L06312. doi:10.1029/2005GL022363

    Google Scholar 

  • Ganguly J (2008) Thermodynamics in earth and planetary sciences. Springer, New York, p 501

    Book  Google Scholar 

  • Ganguly J, Saxena SK (1987) Mixtures and mineral reactions. Springer, New York

    Book  Google Scholar 

  • Gurnis M, Davies GF (1985) Simple parametric models of crustal growth. J Geodyn 3:105–135

    Article  Google Scholar 

  • Kellogg JB, Jacobsen SB, O’Connell RJ (2002) Modeling the distribution of isotopic rations in geochemical reservoirs. Earth Planet Sci Lett 204:183–202

    Article  Google Scholar 

  • McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765

    Article  Google Scholar 

  • McKenzie D (1985) 230Th–238U disequilibrium and melting processes beneath ridge area. Earth Planet Sci Lett 72:149–157

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distribution from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • McKenzie D, Jackson J, Priestley K (2005) Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett 233:337–349

    Google Scholar 

  • Meinbom A, Anderson DL (2003) The statistical upper mantle assemblage. Earth Planet Sci Lett 217:123–139

    Article  Google Scholar 

  • Ribe NM (1987) Theory of melt segregation: a review. J Volcano Geotherm Res 33:241–253

    Article  Google Scholar 

  • Rudge JF, McKenzie D, Haynes PH (2005) A theoretical approach to understanding the isotopic heterogeneity of mid-ocean ridge basalt. Geochim Cosmochim Acta 60:3873–3887

    Article  Google Scholar 

  • Shaw DM (2006) Trace elements in magmas: a theoretical treatment. Cambridge University Press, Cambridge

    Google Scholar 

  • Sigurdsson H (1999) Melting the earth: the history of ideas on volcanic eruptions. Oxford University Press, Oxford

    Google Scholar 

  • Slater L, McKenzie D, Gronvold K, Shimazu N (2001) Melt generation and movement beneath Theistareykir, NE Iceland. J Petrol 42:321–354

    Article  Google Scholar 

  • Sleep NH (1974) Segregation of magma from a mostly crystalline mesh. Bull Geol Soc Am 85:1225–1232

    Article  Google Scholar 

  • Steefel CI, DePaolo DJ, Lichtner PC (2005) Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet Sci Lett 240:539–558

    Article  Google Scholar 

  • Stracke A, Bourdon B, McKenzie D (2006) Melt extraction in the mantle: constraints from U–Th–Pa–Ra studies in oceanic basalts. Earth Planet Sci Lett 244:97–112

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Williams RW, Gill JB (1989) Effects of partial melting on the uranium decay series. Geochi Cosmochim Acta 53:1607–1619

    Article  Google Scholar 

Download references

Acknowledgments

RNS is grateful to INSA, India for the award of a Senior Scientists scheme to him. Contribution under PSC0204 (INDEX) and MLP6107-28 (AM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, R.N., Manglik, A. (2014). Models for Quantifying Mantle Melting Processes. In: Kumar, S., Singh, R. (eds) Modelling of Magmatic and Allied Processes. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06471-0_2

Download citation

Publish with us

Policies and ethics