Skip to main content

Root and Stem Rots

  • Chapter
  • First Online:
Wheat Diseases and Their Management

Abstract

Root and stem rots are caused by several nematodal and fungal diseases, however, only one nematodal and seven fungal diseases are described in this chapter. Most of these diseases occur either alone or in combination with others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Angus JF, gardner PA, Pitson GD, Wong PTW (1998) A comparison of six methods to control take-all in wheat. Aust J Agric Res 49:1225–1240

    Google Scholar 

  • Asher MJC, Shipton PJ (eds) (1981) Biology and control of take-all. Academic, New York

    Google Scholar 

  • Bailey DJ, Paveley N, Pillinger C, Foulkes J, Spink J, Gilligan CA (2005) Epidemiology and chemical control of take-all on seminal and adventitious roots of wheat. Phytopathology 95:62–98

    CAS  PubMed  Google Scholar 

  • Benedicts WG, Mountain WB (1956) Studies on the etiology of a root rot of winter wheat in south-western Ontario. Can J Bot 34:159–174

    Google Scholar 

  • Bithell SL, Butler RC, Harrow S, McKay A, Cromey MG (2011) Susceptibility to tale-all of cereal and grass species and their effects on pathogen inoculum. Ann Appl Biol 159:252–266

    Google Scholar 

  • Bockus WW, Shroyer JP (1998) The impact of reduced tillage on soilborne plant pathogens. Ann Rev Phytopathol 36:485–500

    CAS  Google Scholar 

  • Bockus WW, Davis MA, Norman BL (1994) Effect of soil shading by surface residues during summer fallow on take-all of winter wheat. Plant Dis 78:50–54

    Google Scholar 

  • Bockus WW, Bowden RL, Hunger RM, Murray TD, Smiley RW (2010) Compendium of wheat diseases and pests. American Phytopathological Society, St. Paul, p 171

    Google Scholar 

  • Boosales MG (1962) Precocious sporulation and longevity of conidia of Helminthosporium sativum in soil. Phytopathology 52:1172–1177

    Google Scholar 

  • Booth C (1971) The genus Fusarium. Comm. Mycol. Inst. England, 237 pp

    Google Scholar 

  • Booth C, Waterston JM (1964a) Fusarium avenaceum. C.M.I. Descriptions of pathogenic fungi and bacteria. No. 28, Comm. Mycol. Inst. England.

    Google Scholar 

  • Booth C, Waterston JM (1964b) Fusarium solani. C.M.I. Descriptions of pathogenic fungi and bacteria.No. 30, Comm. Mycol. Inst. England.

    Google Scholar 

  • Bruehl GW (1953) Pythium root rot of barley and wheat. U.S. Deptartment of Agriculture. Technical Bulletin No. 084.

    Google Scholar 

  • Butler EJ, Jones SC (1955) Plant pathology. Macmillan, New York, p 977

    Google Scholar 

  • Caetano VR, Pierobom CR (1972) Os problemas sanitários do sistema radicular do trigo. Indicação de pesquisa MA/IPEAS, Pelotas, Brasil 32:1

    Google Scholar 

  • Chamswarng C, Cook RJ (1985) Identification and comparative pathogenicity of Pythium species from wheat roots and wheat-field soils in the Pacific Northwest. Phytopathology 75:821–827

    Google Scholar 

  • Chester KS (1950) Nature and prevention of plant diseases. McGraw Hill, New York, 525 pp

    Google Scholar 

  • Chinn SHF (1978) Influence of seed treatment with imazalil on common root rot of winter wheat. Plant Dis 70:857–859

    Google Scholar 

  • Chng SF, Stewart A, Cromey MG, Dodd SL, Butler RC, Jaspers MV (2013) Effects of different rates of Gaeumannomyces graminis var. tritici inoculum for detecting take-all suppression in soils. Aust Pl Pathol 42:103–109

    Google Scholar 

  • Choppakatla V, Hunger RM, Mclout HA (2006) First report of seed-ling blight caused by Sclerotium rolfsii on wheat in Oklahoma. Plant Dis 90:986

    Google Scholar 

  • Christensen JJ (1925) Physiologic specialization and mutation in Helminthosporium sativum. Phytopathology 15:785–795

    Google Scholar 

  • Christensen JJ (1929) The influences of the temperature in the frequency of mutation in Helminthosporium sativum. Phytopathology 19:155–162

    Google Scholar 

  • Colbach RJ, Lucas P, Meynard JM (1997) Influence of crop management on take-all development and disease cycles on winter wheat. Phytopathology 87:26–32

    CAS  PubMed  Google Scholar 

  • Cook RJ (1967) Gibberella avenacea sp. nov. perfect state of Fusarium roseum f. sp. cerealsAvenaceum”. Phytopathology 57:732–736

    Google Scholar 

  • Cook RJ (1968) Fusarium root and foot rot of cereals in the Pacific Northwest. Phytopathology 58:127–131

    Google Scholar 

  • Cook RJ (1980) Fusarium root rot of wheat and its control in the Pacific Northwest. Plant Dis 64:1061–1066

    Google Scholar 

  • Cook RJ (1984) Root health: Importance and relationship to farming practices. In: Organic farming: current technology and its role in sustainable agriculture. Madison, 111–127

    Google Scholar 

  • Cook RJ (2001) Management of wheat and barley root diseases in modern farming systems. Aust Pl Pathol 30:119–126

    Google Scholar 

  • Cook RJ, Zhang BX (1985) Degree of sensitivity to metalaxyl within the Pythium spp. Pathogenic to wheat in the Pacific Noth-west. Plant Dis 69:686–688

    Google Scholar 

  • Cook RJ, Sitton JW, Waldher JT (1980) Evidence for Pythium as a pathogen of direct-drilled wheat in the Pacific Northwest. Plant Dis 64:102–103

    Google Scholar 

  • Cook RJ, Sitton JW, Haglund WA (1987) Influence of soil treatment on growth and yield of wheat and implications for control of Pythium root rot. Phytopathology 77:1192–1198

    Google Scholar 

  • Cook RJ, Chamswarng C, Tang WH (1990) Influence of wheat chaff and tillage on Pythium populations in soil and Pythium damage to wheat. Soil Biol Biochem 22:939–947

    Google Scholar 

  • Cook RJ, Schillinger WF, Christensen NW (2002) Rhizoctonia root rot and take-all of wheat in diverse direct-seed spring cropping systems. Can J Pl Pathol 24:349–358

    Google Scholar 

  • Costa Neto JP (1943) Fungos do Rio Grande do Sul observados nos anos 1940–41. Bull Secretaria do Estado dos negócios da Agricultura, Industria e Comércios 99:1–11

    Google Scholar 

  • Cox J (1965) Continuous wheat growing and the decline of take-all. Rep Rothomstead Exp Sta 1964:133–134

    Google Scholar 

  • Daval S, Lebreton L, Gazengel K, Guilerm-Ercklboudt AY, Sarniguet A (2010) Genetic evidence for Gaeummanomyces graminis var. tritici into two major groups. Plant Pathol 59:165–178

    CAS  Google Scholar 

  • Deacon JW (1974) Interactions between varieties of Gaeumannomyces graminis and Phialophora radicicola on roots, stem and rhizomes of the Gramineae. Plant Pathol 22:85–92

    Google Scholar 

  • Dickson JG (1956) Diseases of field crops. McGraw-Hill, New York, p 517

    Google Scholar 

  • Diehl JA (1979) Common root rot of wheat in Brazil. Plant Dis Reptr 63:1020–1022

    Google Scholar 

  • Diehl JA (1982) Reação de cultivares de trigoà podridão comum de raízes. Pesq Agropec Bras 17(2):1733–1735

    Google Scholar 

  • Dielh JA, Oliveira MAR, Igarashi S, Reis EM, Mehta YR, Gomes EP (1983) Levantamento de ocorrência de doenças radiculares do trigo no Paraná. Fitopatologia Brasileira 9:179–188

    Google Scholar 

  • Dubin HJ (1985) Reflections on foot rots of wheat in warmer non-traditional wheat growing climates. In: Wheats for more tropical environments. Proceedings of the international symposium, CIMMYT, Mexico, pp. 182–185

    Google Scholar 

  • Duckez LJ (1989) Number and viability of Cochliobolus sativus in soil profiles in summer fallow fields in Sasketchewan. Can J Plant Pathol 3:12–14

    Google Scholar 

  • Elnur E, Chester CG (1967) A note on two isolates of Rhizoctonia solani Khun from wheat. Plant Pathol 16:104–107

    Google Scholar 

  • Fish S (1970) The history of plant pathology in Australia. Ann Rev Phytopathol 8:13–36

    Google Scholar 

  • Frank JA (1985) Influence of root rot on winter survival and yield of winter barley and winter wheat. Phytopathology 75:1039–1041

    Google Scholar 

  • Garrett SD (1939) Soil conditions and the take-all disease of wheat. IV. Factors limiting infection by ascospores of Ophiobolus graminis. Ann Appl Biol 26:47–55

    Google Scholar 

  • Garrett SD, Mann HH (1948) Soil conditions and the take-all disease of wheat. X. Control of the disease under continuous cultivation of a spring-sown cereal. Ann Appl Biol 35:435–442

    CAS  PubMed  Google Scholar 

  • Gasperi AJ (1961) Moléstias do trigo no Rio Grande do Sul. Bull Tec. Secretaria da Agricultura, s. d. 36 pp

    Google Scholar 

  • Gill JS, Sivasithamparam K, Smettem KRJ (2001) Effect of soil moisture at different temperatures on Rhizoctonia root rot of wheat seedlings. Plant Soil 231:91–96

    CAS  Google Scholar 

  • Gutteridge RJ, Zhang JP, Jenkyn JF, Bateman GL (2005) Survival and multiplication of Gaeumannomyces graminis var. tritici (the wheat take-all fungus) and related fungi on different wild and cultivated grasses. Appl Soil Ecol 29:143–154

    Google Scholar 

  • Gyawali S, Neate SM, Adhikari TB, Puri KD, Burlakoti RR, Zhong S (2012) Genetic structure of Cochliobolus sativus populations sampled from root and leaves of barley and wheat in North Dakota. J Phytopathol 160:637–646. doi:10.1111/j.1439-0434.2012.01956

    Google Scholar 

  • Henry AW (1931) Occurrence and sporulation of Helminthosporium sativum P.K. & B. in the soil. Can J Res 5:407–413

    Google Scholar 

  • Higginbotham RW, Paulitz TC, Kidwell KK (2004) Virulence of Pythium species isolated from wheat fields in Eastern Washington. Plant Dis 88:1021–1026

    Google Scholar 

  • Hobbs PR, Mann CE, Butler L (1988) A perspective on research needs for the rice-wheat rotation. In: Klatt AR (ed) Wheat production constrains in tropical environments. CIMMYT, Mexico, pp 197–211

    Google Scholar 

  • Horneby D (1969) Methods of investigating populations of the take-all fungus (Ophiobolus graminis) in soil. Ann Appl Biol 35:435–442

    Google Scholar 

  • Hosford RM, Solangi GRM, Kiesling RL (1975) Inheritance in Cochliobolus sativus. Phytopathology 65:699

    Google Scholar 

  • Huber DM (1972) Spring versus fall nitrogen fertilization and take-all of spring wheat. Phytopathology 62:434–436

    Google Scholar 

  • Huber DM, Painter CG, McKay HC, Peterson DL (1968) Effect of nitrogen fertilization on take-all of winter wheat. Phytopathology 58:1470–1472

    Google Scholar 

  • Huberli D, Connor M, Miyan S, MacLeod W (2012) Integrated disease management options to control Rhizoctonia bare-patch in wheat. In:7th Australian soil-borne diseases symposium, South Perth

    Google Scholar 

  • Igarashi S, Mehta YR, Nazareno NRX (1983) Occorrênciade Sclerotium rolfsii na cultura de trigo (Triticum aestivum) no estado do Paraná, Brasil. Fitopatologia Brasileira 8:513–515

    Google Scholar 

  • Inglis DA, Cook RJ (1986) Persistence of chlamydospores of Fusarium culmorum in wheat field soils of eastern Washington. Phytopathology 76:1205–1208

    Google Scholar 

  • Jenkins WA (1948) A root disease complex of small grains in Virginia. Phytopathology 38:519–527

    Google Scholar 

  • Joshi LM, Goel LB, Renfro BL (1969) Multiplication of inoculum of Helminthosporium turcicum on sorghum seeds. Indian Phytopathol 22:146–148

    Google Scholar 

  • Juhnke ME, Mathre DE, Sands DC (1984) A selective midium for Gaeumannomyces graminis var. tritici. Plant Dis 68:233–236

    Google Scholar 

  • Knight NL, Platz GJ, Lehmensiek A, Sutherland MW (2010) An investigation of genetic variation among Australian isolates of Bipolaris sorokiniana from different cereal tissues and camparison of their abilities to cause spot blotch on barley. Australian Pl Pathol 39:207–216

    Google Scholar 

  • Kumar J, Schafer P, Huckelhoven R, Lagen G, Baltruschat H, Stein E, Nagarajan S, Kogel KH (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Pl Pathol 3(4):185–195

    CAS  Google Scholar 

  • Lawrence L, Harvey P (2006) Rooting out Pythium and its allies. Farming Ahead 177:42–44

    Google Scholar 

  • Liddell CM (1985) The comparative pathogenicity of Fusarium graminearum group 1, Fusarium culmorum and Fusarium crookwellense as crown, foot and root rot pathogens of wheat. Aust Pl Pathol 14:29–32

    Google Scholar 

  • Lindingham RJ, Atkinson TG, Horricks JS, Mills JT, Piening LJ, Tinline RD (1973) Wheat losses due to common root rot in the Prairie Provinces of Canadá, 1969–71. Can Plant Dis Surv 53:113–122

    Google Scholar 

  • Lutrell ES (1964) Taxanomic criteria in Helminthosporium. Mycologia 56:119–132

    Google Scholar 

  • Luzzardi GC, Pierobom RC (1970) Moléstias do trigo na região sul do Brasil. Circular No. 42, EMBRAPA, Rio Grande do Sul, Brasil, 24pp

    Google Scholar 

  • Luzzardi GC, Reis EM, Pierobom CR (1976) Epifitia de Colletotrichum graminicola (Cesati) G. W. Wilson, nos trigais no sul do Brasil, e, 1975. Trabalho apresentado em VII RENAPET, Ponta Grossa, Brasil

    Google Scholar 

  • MacNish GC, Neate SM (1996) Rhizoctonia bare patch of cereals: an Australian perspective. Plant Dis 80:965–971

    Google Scholar 

  • Mai WF, Mullin PG (1996) Plant parasitic nematodes: a pictorial key to Genera. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Marvodi OV, Walter N, Elateek S, Tayler CG, Ocubara PA (2012) Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. DOI: 10.1016/j.biocontrol

  • Mazzola M, Wong OT, Cook RJ (1996) Virulence of Rhizoctonia oryzae and R. solani AG-8 on wheat and detection in R. oryzae in plant tissue by PCR. Phytopathology 86:354–360

    CAS  Google Scholar 

  • Mehta YR (1978) Doenças do trigo e seu controle. Editora CERES, São Paulo, p 190

    Google Scholar 

  • Mehta YR (1981) Conidial production, sporulation period and extension of lesion of Helminthosporium sativum on flag leaves of wheat. Pesq Agrop Bras 16(1):77–99

    Google Scholar 

  • Mehta YR (1993) Manejo integrado de enfermedadesdel trigo. Imprenta Landivar, Santa Cruz de la Sierra, Bolivia, 314pp

    Google Scholar 

  • Mehta YR, Gaudêncio C (1991) Effects of tillage practices and crop rotation on the epidemiology of some major wheat diseases. In: Saunders C (ed) Proceedings of the international conference on wheat for non-traditional warmer areas. CIMMYT, Mexico, pp 266–283

    Google Scholar 

  • Mehta YR, Igarashi S (1985a) Chemical control measures for major diseases of wheat with special reference to spot blotch. pp 196–200. Proc. Inter. Sym. CIMMYT, México, D.F., 364 pp.

    Google Scholar 

  • Mehta YR, Igarashi S (1985b) Fungos associados nas sementes de trigo Triticum aestivum L. e seu efeito na infecção do sistema radicular das plantas. Revista Brasileira de Sementes 7:133–159

    Google Scholar 

  • Merriman PR, Price RD, Baker KF (1974a) The effect of inoculation of seed with antagonists of Rhizoctonia solani on growth of wheat. Aust J Agric Res 25:213–218

    Google Scholar 

  • Merriman PR, Price RD, Kolimorgan JF, Piggott T, Ridge EH (1974b) Effect of seed inoculation with Bacillus subtilis and Steptomycesgriseus on the growth of cereals and carrots. Aust J Agric Res 25:219–226

    Google Scholar 

  • Milus EA, Cartwright RD, Rothrock CS, Anders M, Slaton N (2009) Impact of cropping sequences and alternative hosts on take-all management of winter wheat in Arkansas. Plant Health Progress DOI: 10.1094/PHP 2009-0512-02-RS

  • Monds RD, Cromey MG, Lauren DR, di Menna M, Marshall J (2005) Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zeland: Molecular phylogenetic analysis, mycotoxin chemotypes and co-existance of species. Mol Res 109:410–420

    CAS  Google Scholar 

  • Moore KJ, Cook RJ (1984) Increase in take-all of wheat with direct drilling in the Pacific Noth-west. Phytopathology 74:1044–1049

    Google Scholar 

  • Mordue JEM (1974) Thanatephorouscucumeris. C.M.I. Descriptions of pathogenic fungi and bacteria. No. 406. Comm. Mycol. Inst. England.

    Google Scholar 

  • Nash SM, Christou T, Snyder WC (1961) Existence of Fusarium solani f. phaseolias clamydospores in soil. Phytopathology 51:308–312

    Google Scholar 

  • Nath R, Neergaard P, Mathur SB (1970) Identification of Fusarium species on seeds as they occur in blotter test. Proc Int Seed Test Assoc 35:121–144

    Google Scholar 

  • Nicol JM, Davies KA, Hancock TW, Fisher JM (1999) Yield loss caused by Pratylenchus thornei on wheat in South Australia. J Nematology 31:367–376

    CAS  Google Scholar 

  • Nillson HE (1973) Varietal differences in resistance to take-all disease of winter wheat. Swedish J Agric Res 3:89–93

    Google Scholar 

  • Pankhurst CE, McDonald HJ, Hawke BG (1995) Influence of tillage and crop rotation on the epidemiology of Pythium infections of wheat in a red-brown earth of South Australia. Soil Biol Biochem 27:1065–1073

    CAS  Google Scholar 

  • Parmeter JR (1970) Rhizoctonia solani, biology and pathology. University of California Press, Berkeley, 255pp

    Google Scholar 

  • Paulitz TC (2010) Pythium root rot. In: Bockus WW et al (eds) Compendium of wheat diseases and pests, 3rd edn. American Phytopathological Society, St. Paul, pp 45–47

    Google Scholar 

  • Paulitz TC, Adams K (2003) Composition and distribution of Pythium communities in wheat fields in eastern Washington State. Phytopathology 93:867–873

    CAS  PubMed  Google Scholar 

  • Paulitz TC, Adams K, Mazzola M (2003a) Pythium abappressorium—a new species from eastern Washington. Mycologia 95:80–86

    PubMed  Google Scholar 

  • Paulitz TC, Smith JD, Kidwell KK (2003b) Virulence of Rhizoctonia oryzae on wheat and barley cultivars from Pacific Northwest. Plant Dis 87:51–55

    Google Scholar 

  • Paulitz TC, Zang H, Cook RJ (2003c) Spatial distribution of Rhizoctonia oryzae and rhizoctonia root rot in direct-seeded cereals. Can J Pathol 25:295–303

    Google Scholar 

  • Paultiz TC, Shroeder KL (2005) A new method for the quantification of Rhizoctonia solani and R. oryzae from soil. Plant Dis 89:767–772

    Google Scholar 

  • Pinheiros VR, Seixas CDS, Godoy CV, Soares R, Oliveira MCN, Almeida AMR (2010) Development of Sclerotium rolfsii sclerotia on soybean, corn and wheat straw, under different soil temperatures and moisture contents. Pesq Agrop Bras 45(3):1–4

    Google Scholar 

  • Pitt D (1964a) Studies on sharp eyespot disease of cereals. I. Ann Appl Biol 54:77–89

    Google Scholar 

  • Pitt D (1964b) Studies on sharp eyespot disease of cereals. II. Ann Appl Biol 54:231–240

    Google Scholar 

  • Politis DJ (1975) The identity and perfect state of Colletotrichum graminicola. Mycologia 67:56–62

    Google Scholar 

  • Politis DJ, Wheeler H (1972) The perfect stage of Colletotrichum graminicola. Plant Dis 56:1026–1027

    Google Scholar 

  • Prew RD, Mcintosh HM (1975) Effect of benomyl and other fungicides on take-all, eyespot and sharp eyespot diseases of winter wheat. Plant Pathol 24:67–71

    CAS  Google Scholar 

  • Pumphrey FV, Wilkins DE, Hane DC, Smiley RW (1987) Influence of tillage and nitrogen fertilizer on Rhizoctonia root rot (bare patch) of winter wheat. Plant Dis 71:125–127

    Google Scholar 

  • Punja ZK (1985) The biology, ecology and control of Sclerotium rolfsii. Ann Rev Phytopathol pp 23:97–127

    CAS  Google Scholar 

  • Punja ZK (1988) Sclerotium rolfsii: Potential impact on wheat production and possible means of control. In: Klatt AR (ed) Wheat production constrains in tropical environments. CIMMYT, México, pp 153–174

    Google Scholar 

  • Punja ZK, Huang JS, Jenkins FS (1985) Relationship of mycelial growth and production of oxalic acid and cell wall degrading enzymes to virulence of Sclerotium rolfsii. Can J Plant Pathol 7:109–117

    CAS  Google Scholar 

  • Quisenberry KS, Rietz LP (eds) (1967) Wheat and wheat improvement. American Society of Agronomy, Madison, 560pp

    Google Scholar 

  • Raaijmakers JM, Paulitz TC (2009) Therhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganism. Plant Soil 32:341–361

    Google Scholar 

  • Reeves TG, Ellington A, Brooke HD (1984) Effect of lupin-wheat rotations on soil fertility, crop disease and crop yields. Aus J Exp Agric Husb 24:595–600

    Google Scholar 

  • Reis EM (1986a) Densidade de inóculo de Helminthosporium sativum no solo, indicativo da interferência entre parcelas experimentais. Fitopatologia Brasileira 11:89–94

    Google Scholar 

  • Reis EM (1986) Doenças do trigo II. Mal-do-pé. Apassul, Passo Fundo, Brasil, 29 pp

    Google Scholar 

  • Reis EM, Abrão (1983) Effect of tillage and wheat residue management on the vertical distribution and inoculum density of Cochliobolus sativus in soil. Plant Dis 67:1088–1089

    Google Scholar 

  • Reis EM, Baier AC (1983) Reação de cereais de inverno à podridão comum de raízes. Fitopatologia Brasileira 8:277–281

    Google Scholar 

  • Roget DK, Venn NR, Rovira AD (1987) Reduction of Rhizoctonia root rot of direct-drilled wheat by short term chemical fallow. Aust J Exp Agric 27:425–430

    Google Scholar 

  • Rothrock CS, Cunfer BM (1991) Influence of small grain rotations on take-all in a subsequent wheat crop. Plant Dis 75:1050–1052

    Google Scholar 

  • Rovira AD (1986) Influence of crop rotation and tillage on Rhizoctonia bare patch of wheat. Phytopathology 76:669–673

    Google Scholar 

  • Russel RS, Igue K, Mehta YR (eds) (1981) Soil root system in Brazilian Agriculture. IAPAR, Londrina, Paraná, Brazil, 372pp

    Google Scholar 

  • Sallans BJ, Tinline RD (1965) Resistance in wheat to Cochliobolus sativus, a cause of common root rot. Can J Plant Sci 45:343–351

    Google Scholar 

  • Sanford GB (1956) Factors influencing formation of sclerotia by Rhizoctonia solani. Phytopathology 46:281–284

    Google Scholar 

  • Schoeder KL, Okubara PA, Tambong JT, Lévesque CA, Paulitz TC (2006) Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Phytopathology 96:637–647

    Google Scholar 

  • Schroeder KL, Paulitz TC (2006) Root diseases of wheat and barley during the transition from conventional tillage to direct seeding. Plant Dis 90:1247–1253

    Google Scholar 

  • Sequeira L (1963) Effect of urea application on survival of Fusariumoxy sporum f. cubense in soil. Phytopathology 53:322–336

    Google Scholar 

  • Shipton PJ (1972) Take-all in spring sown cereals under continuous cultivation. Disease progress and decline in relation to crop succession and nitrogen. Ann Appl Biol 71:33–46

    Google Scholar 

  • Shipton PJ, Cook JR, Sitton JW (1973) Occurrence and transfer of a biological factor in soil that suppresses take-all of wheat in eastern Washington. Phytopathology 63:511–517

    CAS  Google Scholar 

  • Siegle H (1961) UbermischinfektionenmitOphiobolus graminis und Didymellaexitales. Phytopath Z 42:305–348

    Google Scholar 

  • Singh K, Frisvad JC, Thrane UIF, Mathur SB (1991) An illustrated manual on identification of some seed-borne Aspergilli, Fusaria, Penicillia and their mycotoxins. Danish Govt. Inst. Seed Path. For Develop. Countries, Copenhagen, Denmark, 133 pp

    Google Scholar 

  • Singleton LL (1988) Wheat root rot in tropical environments: potential impact and control. In: Wheat production constrains in tropical environments. Proceedings of international conference 1987. CIMMYT, Mexico, pp. 251–262

    Google Scholar 

  • Smiley RW (2009) Water and temperature parameters associated with winter wheat diseases caused by soil-borne pathogens. Plant Dis 93:73–80

    Google Scholar 

  • Smiley RW, Machado S (2009) Pratylenchus neglectus reduces yield of winter wheat in dryland cropping systems. Plant Dis 93:263–271

    Google Scholar 

  • Smiley RW, Uddin W (1993) Influence of soil temperature on Rhizoctonia root rot (R. solani AG-8 and R. oryzae) of winter wheat. Phytopathology 83:777–785

    Google Scholar 

  • Smiley RW, Cook RJ, Papendick RI (1970) Unhydrous ammonia as a fungicide against Fusarium and fungicidal activity in the ammonia and ammonia-potassium azide solutions. Phytopathology 60:1227–1232

    CAS  Google Scholar 

  • Smiley RW, Cook RJ, Papendick RI (1972) Fusarium root rot of wheat and peas as influenced by soil applications of anhydrous ammonia and ammonia-potassium azide solutions. Phytopathology 62:86–91

    CAS  Google Scholar 

  • Smiley RW, Gourlie JA, Easley SA, Patterson LM (2005) Pathogenicity of fungi associated with the wheat crown rot complex in Origon and Washington. Plant Dis 89:949–957

    Google Scholar 

  • Specht LP, Rush CM (1988) Fungi associated with root rot and foot rot of winter wheat and populations of Cochliobolus sativus in the Texas Panhandle. Plant Dis 72:959–963

    Google Scholar 

  • Stack RW (1977) A simple selective medium for isolation of Cochliobolus sativus from diseased cereal crowns and roots. Plant Dis Reptr 61:521–522

    Google Scholar 

  • Stack RW (1994) Susceptibility of hard red spring wheats to common root rot. Crop Sci 34:276–278

    Google Scholar 

  • Sward RM, Kollmorgen JF (1986) The separate and combined effects of barley yellow dwarf virus and take-all fungus (Gaeumannomyces graminis var. tritici) on the growth and yield of wheat. Aust J Agri Res 37(1):11–22

    Google Scholar 

  • Tinline RD (1977) Multiple infections of sub-crown internodes of wheat (Triticum aestivum) by common root rot fungi. Can J Bot 55:30–34

    Google Scholar 

  • Toussoun TA, Nash SM, Snyder WC (1960) The effect of nitrogen sources and glucose on the pathogenesis of Fusarium solani f. sp. phaseoli. Phytopathology 50:137–140

    CAS  Google Scholar 

  • Tyner LE (1956) The incidence of root disease fungi in wheat fields of central and northwestern Alberta. Plant Dis Reptr 40:358–360

    Google Scholar 

  • Vanterpool TC (1938) Some species of Pythium parasitic on wheat in Canada and England. Ann Appl Biol 25:528–543

    Google Scholar 

  • Verma PR, Morral RAA, Randell RL (1975) The epidemiology of common root rot in Manitoba wheat. III. Development of lesions on sub-crown internodes and the effect of added phosphate. Can J Bot 53:601–606

    Google Scholar 

  • Walker J (1973) Gaeumannomyces graminis var. tritici. In: C.M.I. Descriptions of Pathogenic Fungi and Bacteria no. 383, Kew, Surrey

    Google Scholar 

  • Walker J (1975) Take-all disease of Gramineae: a review of recent work. Rev Plant Pathol 54:113–144

    Google Scholar 

  • Warcup JR (1957) Gaeumannomyces graminis var. tritici. C.M.I. Descriptions of pathogenic fungi and bacteria. No. 33, Comm. Mycol. Inst. Kew Surrey

    Google Scholar 

  • Warren HL, Kommendahl T (1973) Fertilization and wheat refuse effects on Fusarium species associated with roots in Minnesota. Phytopathology 63:103–108

    Google Scholar 

  • Wehrle VW, Ogilve L (1956) Spread of take-all from infected wheat plant. Plant Pathol 5:106–107

    Google Scholar 

  • Weinke KE (1962) The influence of nitrogen on the root disease of bean caused by Fusarium solani f. sp. phaesioli. Phytopathology 52:757 (abstr.)

    Google Scholar 

  • Weller DM, Cook RL (1986a) Increased growth of wheat by seed treatment with fluorescent pseudomonads, and implications of Pythium control. Can J Plant Pathol 8:328–334

    Google Scholar 

  • Weller DM, Cook RJ (1986b) Rhizoctonia root rot of small grains favored by reduced tillage in the Pacific Northwest. Plant Dis 70:70–73

    Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardner BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    CAS  PubMed  Google Scholar 

  • Weste G (1972) The process of root infection by Ophiobolus graminis. Trans Br Mycol Soc 59:133–147

    Google Scholar 

  • Widermuth GB, Thomas GA, Radford BJ, NcNamara KA (1997) Crown rot and common root rot in wheat grown under different tillage and stubble treatments in southern Queensland. Aust Soil Tillage Res 44:211–223

    Google Scholar 

  • Wildermuth GB (1986) Geographic distribution of common root rot and Bipolaris sorokiniana in Queensland wheat soils. Aust J Exp Agric 26:601–606

    Google Scholar 

  • Wood LS (1962) Relation of variation in Helminthosporium sativum to seedling blight in small grains. Phytopathology 52:493–497

    Google Scholar 

  • Yarham DJ, Hirst JM (1975) Diseases in reduced cultivation and direct drilling systems. EPPO Bull 5:287–296

    Google Scholar 

  • Yun-Nung T, Mei-Ju L, Wen-Hsiung K (2011) A simple method for production of uniform inoculum of Rhizoctonia solani with strong pathogenicity. doi: 10.1016/j.bcab.2011.08.006

  • Zawart R, Thomson J, Milgatte A, Bansal U, Williamson P, Raman H, Bariana H (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breeding 26:107–124

    Google Scholar 

  • Zillinsky FJ (1983) Common diseases of small grains of cereals—A guide for identification. CIMMYT, Mexico, 141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mehta, Y.R. (2014). Root and Stem Rots. In: Wheat Diseases and Their Management. Springer, Cham. https://doi.org/10.1007/978-3-319-06465-9_7

Download citation

Publish with us

Policies and ethics