Skip to main content

Targeting Homing to Enhance Engraftment Following Umbilical Cord Blood Stem Cell Transplantation

  • Chapter
  • First Online:
Umbilical Cord Blood Banking and Transplantation

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 903 Accesses

Abstract

Umbilical cord blood (UCB) offers an important alternative source of hematopoietic stem cells for a large population of patients who cannot locate an adult donor on a registry. However, a major weakness of transplant with UCB is delayed engraftment related to the relatively low stem cell dose found in UCB. This chapter explores the targeting of stem cell homing to the bone marrow as means to enhance engraftment. A number of approaches, including ex vivo fucosylation of UCB cells, ex vivo priming with prostaglandin E2, ex vivo priming with complement fragment 3a, and systemic inhibition of CD26/dipeptidyl peptidase (DPP)-IV. These promising approaches offer the potential of improving the outcome of UCB transplantation and extending the potentially curative modality of allogeneic stem cell transplantation to more adults with hematologic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beatty PG, Mori M, Milford E. Impact of racial genetic polymorphism on the probability of finding an HLA-matched donor. Transplantation. 1995;60:778–83.

    Article  CAS  PubMed  Google Scholar 

  2. Rodrigues CA, Rocha V, Dreger P, Brunstein CG, Sengeloev H, Finke J, Mohty M, Rio B, Petersen E, Guilhot F, Niederwieser D, Cornelissen JJ, Jindra P, Nagler A, Fegueux N, Schoemans H, Robinson S, Ruggeri A, Gluckman E, Canals C, Sureda A. Alternative donor hematopoietic stem cell transplantation for mature lymphoid malignancies after reduced-intensity conditioning regimen: similar outcomes with umbilical cord blood and unrelated donor peripheral blood. Haematologica. 2014;99(2):370–7.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Szabolcs P, Park KD, Reese M, Marti L, Broadwater G, Kurtzberg J. Coexistent naive phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood. Exp Hematol. 2003;31:708–14.

    Article  PubMed  Google Scholar 

  4. Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE, Stevens C, Barker JN, Gale RP, Lazarus HM, Marks DI, van Rood JJ, Scaradavou A, Horowitz MM. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004 351:2265–75.

    Article  CAS  PubMed  Google Scholar 

  5. Tomblyn MB, Arora M, Baker KS, Blazar BR, Brunstein CG, Burns LJ, DeFor TE, Dusenbery KE, Kaufman DS, Kersey JH, MacMillan ML, McGlave PB, Miller JS, Orchard PJ, Slungaard A, Tomblyn MR, Vercellotti GM, Verneris MR, Wagner JE, Weisdorf DJ. Myeloablative hematopoietic cell transplantation for acute lymphoblastic leukemia: analysis of graft sources and long-term outcome. J Clin Oncol. 2009;27:3634–41.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR, Berkowitz RL, Cabbad M, Dobrila NL, Taylor PE, Rosenfield RE, Stevens CE. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339:1565–77.

    Article  CAS  PubMed  Google Scholar 

  7. Wagner JE, Barker JN, DeFor TE, Baker KS, Blazar BR, Eide C, Goldman A, Kersey J, Krivit W, MacMillan ML, Orchard PJ, Peters C, Weisdorf DJ, Ramsay NK, Davies SM. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100:1611–8.

    CAS  PubMed  Google Scholar 

  8. Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, McGlave PB, Miller JS, Verfaillie CM, Wagner JE. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood. 2005;105:1343–7.

    Article  CAS  PubMed  Google Scholar 

  9. Rocha V, Crotta A, Ruggeri A, Purtill D, Boudjedir K, Herr AL, Ionescu I, Gluckman E. Double cord blood transplantation: extending the use of unrelated umbilical cord blood cells for patients with hematological diseases. Best Pract Res Clin Haematol. 2010;23:223–9.

    Article  PubMed  Google Scholar 

  10. Okada M, Yoshihara S, Taniguchi K, Kaida K, Ikegame K, Kato R, Tamaki H, Inoue T, Soma T, Kai S, Kato S, Ogawa H. Intrabone marrow transplantation of unwashed cord blood using reduced-intensity conditioning treatment: a phase I study. Biol Blood Marrow Transpl. 2012;18:633–9.

    Article  Google Scholar 

  11. de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, Hosing C, Khouri I, Jones R, Champlin R, Karandish S, Sadeghi T, Peled T, Grynspan F, Daniely Y, Nagler A, Shpall EJ. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transpl. 2008;41:771–8.

    Article  Google Scholar 

  12. McNiece IK, Almeida-Porada G, Shpall EJ, Zanjani E. Ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential. Exp Hematol. 2002;30:612–6.

    Article  PubMed  Google Scholar 

  13. Yang J, Hirata T, Croce K, Merrill-Skoloff G, Tchernychev B, Williams E, Flaumenhaft R, Furie BC, Furie B. Targeted gene disruption demonstrates that P-selectin glycoprotein ligand 1 (PSGL-1) is required for P-selectin-mediated but not E-selectin-mediated neutrophil rolling and migration. J Exp Med. 1999;190:1769–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Frenette PS, Subbarao S, Mazo IB, von Andrian UH, Wagner DD. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc Natl Acad Sci U S A. 1998;95:14423–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM. Molecular pathways in bone marrow homing: dominant role of alpha(4)beta(1) over beta(2)-integrins and selectins. Blood. 2001;98:2403–11.

    Article  CAS  PubMed  Google Scholar 

  16. Wright N, Hidalgo A, Rodriguez-Frade JM, Soriano SF, Mellado M, Parmo-Cabanas M, Briskin MJ, Teixido J. The chemokine stromal cell-derived factor-1 alpha modulates alpha 4 beta 7 integrin-mediated lymphocyte adhesion to mucosal addressin cell adhesion molecule-1 and fibronectin. J Immunol. 2002;168:5268–77.

    Article  CAS  PubMed  Google Scholar 

  17. Zanjani ED, Flake AW, Almeida-Porada G, Tran N, Papayannopoulou T. Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4-dependent function. Blood. 1999;94:2515–22.

    CAS  PubMed  Google Scholar 

  18. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, Slav MM, Nagler A, Lider O, Alon R, Zipori D, Lapidot T. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95:3289–96.

    CAS  PubMed  Google Scholar 

  19. Bonig H, Priestley GV, Papayannopoulou T. Hierarchy of molecular-pathway usage in bone marrow homing and its shift by cytokines. Blood. 2006;107:79–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci U S A. 1995;92:9647–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Alon R, Kassner PD, Carr MW, Finger EB, Hemler ME, Springer TA. The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol. 1995;128:1243–53.

    Article  CAS  PubMed  Google Scholar 

  22. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC. α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell. 1995;80:413–22.

    Article  CAS  PubMed  Google Scholar 

  23. Sigal A, Bleijs DA, Grabovsky V, van Vliet SJ, Dwir O, Figdor CG, van Kooyk Y, Alon R. The LFA-1 integrin supports rolling adhesions on ICAM-1 under physiological shear flow in a permissive cellular environment. J Immunol 2000;165:442–52.

    Article  CAS  PubMed  Google Scholar 

  24. Katayama Y, Hidalgo A, Furie BC, Vestweber D, Furie B, Frenette PS. PSGL-1 participates in E-selectin-mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and alpha4 integrin. Blood. 2003;102:2060–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005;106:1901–10.

    Article  CAS  PubMed  Google Scholar 

  26. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest. 1999;104:1199–211.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cashman J, Dykstra B, Clark-Lewis I, Eaves A, Eaves C. Changes in the proliferative activity of human hematopoietic stem cells in NOD/SCID mice and enhancement of their transplantability after in vivo treatment with cell cycle inhibitors. J Exp Med. 2002;196:1141–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Glimm H, Tang P, Clark-Lewis I, von Kalle C, Eaves C. Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor-1 enhances their ability to engraft NOD/SCID mice. Blood. 2002;99:3454–7.

    Article  CAS  PubMed  Google Scholar 

  29. Brenner S, Whiting-Theobald N, Kawai T, Linton GF, Rudikoff AG, Choi U, Ryser MF, Murphy PM, Sechler JM, Malech HL. CXCR4-transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells. Stem Cells. 2004;22:1128–33.

    Article  CAS  PubMed  Google Scholar 

  30. Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, Kelvin D, Dale L, Ferguson SS, Wu D, Fellows F, Bhatia M. The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression. Proc Natl Acad Sci U S A. 2000;97:14626–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439:599–603.

    Article  CAS  PubMed  Google Scholar 

  32. McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost. 2001;86:746–56.

    CAS  PubMed  Google Scholar 

  33. McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002;14:581–6.

    Article  CAS  PubMed  Google Scholar 

  34. Vestweber D, Blanks JE. Mechanisms that regulate the function of the selectins and their ligands. Physiol Rev. 1999;79:181–213.

    CAS  PubMed  Google Scholar 

  35. Xia L, McDaniel JM, Yago T, Doeden A, McEver RP. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood. 2004;104:3091–6.

    Article  CAS  PubMed  Google Scholar 

  36. Hidalgo A, Weiss LA, Frenette PS. Functional selectin ligands mediating human CD34( + ) cell interactions with bone marrow endothelium are enhanced postnatally. J Clin Invest. 2002;110:559–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Robinson SN, Simmons PJ, Thomas MW, Brouard N, Javni JA, Trilok S, Shim JS, Yang H, Steiner D, Decker WK, Xing D, Shultz LD, Savoldo B, Dotti G, Bollard CM, Miller L, Champlin RE, Shpall EJ, Zweidler-McKay PA. Ex vivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rgamma(null) mice. Exp Hematol. 2012;40:445–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Maly P, Thall A, Petryniak B, Rogers CE, Smith PL, Marks RM, Kelly RJ, Gersten KM, Cheng G, Saunders TL, Camper SA, Camphausen RT, Sullivan FX, Isogai Y, Hindsgaul O, von Andrian UH, Lowe JB. The alpha(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell. 1996;86:643–53.

    Article  CAS  PubMed  Google Scholar 

  39. Sasaki K, Kurata K, Funayama K, Nagata M, Watanabe E, Ohta S, Hanai N, Nishi T. Expression cloning of a novel alpha 1,3-fucosyltransferase that is involved in biosynthesis of the sialyl Lewis x carbohydrate determinants in leukocytes. J Biol Chem. 1994;269:14730–7.

    CAS  PubMed  Google Scholar 

  40. Wan X, Sato H, Miyaji H, McDaniel JM, Wang Y, Kaneko E, Gibson B, Mehta-D’Souza P, Chen Y, Dozmorov M, Miller LP, Goodman J, Sun Z, Xia L. Fucosyltransferase VII improves the function of selectin ligands on cord blood hematopoietic stem cells. Glycobiology. 2013;23:1184–91.

    Article  CAS  PubMed  Google Scholar 

  41. Popat UR, Oran B, Hosing CM, Kebriaei P, Rezvani K, Parmar S, Shah N, Bollard CM, Molldrem JJ, Nieto Y, Andersson BS, Alousi A, Jones RB, Cooper LJN, Qazilbash MH, Bashir Q, Ahmed S, Bosque D, Chen J, McCarty J, Rondon G, Munsell M, McNiece IK, Kaur I, Yvon E, Annandale K, Olchesky S, de Lima MJ, Champlin RE, Miller L, Paradiso L, Koh L, Zweidler-McKay PA, Shpall EJ. Ex vivo fucosylation of cord blood accelerates neutrophil and platelet engraftment. Blood. 2013;122:691.

    Google Scholar 

  42. Miller SB. Prostaglandins in health and disease: an overview. Semin Arthritis Rheum. 2006;36:37–49.

    Article  CAS  PubMed  Google Scholar 

  43. Gentile P, Byer D, Pelus LM. In vivo modulation of murine myelopoiesis following intravenous administration of prostaglandin E2. Blood. 1983;62:1100–7.

    CAS  PubMed  Google Scholar 

  44. Lu L, Pelus LM, Broxmeyer HE. Modulation of the expression of HLA-DR (Ia) antigens and the proliferation of human erythroid (BFU-E) and multipotential (CFU-GEMM) progenitor cells by prostaglandin E. Exp Hematol. 1984;12:741–8.

    CAS  PubMed  Google Scholar 

  45. Lu L, Pelus LM, Piacibello W, Moore MA, Hu W, Broxmeyer HE. Prostaglandin E acts at two levels to enhance colony formation in vitro by erythroid (BFU-E) progenitor cells. Exp Hematol. 1987;15:765–71.

    CAS  PubMed  Google Scholar 

  46. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447:1007–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hoggatt J, Singh P, Sampath J, Pelus LM. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113:5444–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Jetmore A, Plett PA, Tong X, Wolber FM, Breese R, Abonour R, Orschell-Traycoff CM, Srour EF. Homing efficiency, cell cycle kinetics, and survival of quiescent and cycling human CD34(+) cells transplanted into conditioned NOD/SCID recipients. Blood. 2002;99:1585–93.

    Article  CAS  PubMed  Google Scholar 

  49. Goichberg P, Kalinkovich A, Borodovsky N, Tesio M, Petit I, Nagler A, Hardan I, Lapidot T. cAMP-induced PKCzeta activation increases functional CXCR4 expression on human CD34 + hematopoietic progenitors. Blood. 2006;107:870–9.

    Article  CAS  PubMed  Google Scholar 

  50. Salcedo R, Zhang X, Young HA, Michael N, Wasserman K, Ma WH, Martins-Green M, Murphy WJ, Oppenheim JJ. Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood. 2003;102:1966–77.

    Article  CAS  PubMed  Google Scholar 

  51. Hatse S, Princen K, Bridger G, De Clercq E, Schols D. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett. 2002;527:255–62.

    Article  CAS  PubMed  Google Scholar 

  52. Goessling W, Allen RS, Guan X, Jin P, Uchida N, Dovey M, Harris JM, Metzger ME, Bonifacino AC, Stroncek D, Stegner J, Armant M, Schlaeger T, Tisdale JF, Zon LI, Donahue RE, North TE. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell. 2011;8:445–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, Pelus LM, Desponts C, Chen YB, Rezner B, Armand P, Koreth J, Glotzbecker B, Ho VT, Alyea E, Isom M, Kao G, Armant M, Silberstein L, Hu P, Soiffer RJ, Scadden DT, Ritz J, Goessling W, North TE, Mendlein J, Ballen K, Zon LI, Antin JH, Shoemaker DD. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood. 2013;122:3074–81.

    Article  CAS  PubMed  Google Scholar 

  54. Reca R, Mastellos D, Majka M, Marquez L, Ratajczak J, Franchini S, Glodek A, Honczarenko M, Spruce LA, Janowska-Wieczorek A, Lambris JD, Ratajczak MZ. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood. 2003;101:3784–93.

    Article  CAS  PubMed  Google Scholar 

  55. Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT, Janowska-Wieczorek A, Wetsel RA, Ross GD, Ratajczak MZ. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood. 2004;103:2071–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J. Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)-implications for trafficking of CXCR4 + stem cells. Exp Hematol. 2006;34:986–95.

    Article  CAS  PubMed  Google Scholar 

  57. Wysoczynski M, Kucia M, Ratajczak J, Ratajczak MZ. Cleavage fragments of the third complement component (C3) enhance stromal derived factor-1 (SDF-1)-mediated platelet production during reactive postbleeding thrombocytosis. Leukemia. 2007;21:973–82.

    CAS  PubMed  Google Scholar 

  58. Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, Mills M, Wanzeck J, Janowska-Wieczorek A, Ratajczak MZ. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood. 2005;105:40–8.

    Article  CAS  PubMed  Google Scholar 

  59. Brunstein CG, McKenna DH, DeFor TE, Sumstad D, Paul P, Weisdorf DJ, Ratajczak M, Laughlin MJ, Wagner JE. Complement fragment 3a priming of umbilical cord blood progenitors: safety profile. Biol Blood Marrow Transpl. 2013;19:1474–9.

    Article  CAS  Google Scholar 

  60. Broxmeyer HE, Hoggatt J, O’Leary HA, Mantel C, Chitteti BR, Cooper S, Messina-Graham S, Hangoc G, Farag S, Rohrabaugh SL, Ou X, Speth J, Pelus LM, Srour EF, Campbell TB. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med. 2012;18:1786–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lambeir AM, Proost P, Durinx C, Bal G, Senten K, Augustyns K, Scharpe S, Van Damme J, De Meester I. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem. 2001;276:29839–45.

    Article  CAS  PubMed  Google Scholar 

  62. Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, Arenzana-Seisdedos F, Virelizier JL, Baggiolini M, Sykes BD, Clark-Lewis I. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 1997;16:6996–7007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ruiz P, Zacharievich N, Viciana AL, Shenkin M. Peripheral CD34 + progenitor cells express CD26 and contain increased dipeptidyl peptidase IV activity. Acta Haematol. 1998;100:110–2.

    Article  CAS  PubMed  Google Scholar 

  64. Christopherson KW 2nd, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34 + progenitor cells. J Immunol. 2002;169:7000–8.

    Article  CAS  PubMed  Google Scholar 

  65. Durinx C, Lambeir AM, Bosmans E, Falmagne JB, Berghmans R, Haemers A, Scharpe S, De Meester I. Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem. 2000;267:5608–13.

    Article  CAS  PubMed  Google Scholar 

  66. Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305:1000–3.

    Article  CAS  PubMed  Google Scholar 

  67. Broxmeyer HE, Hangoc G, Cooper S, Campbell T, Ito S, Mantel C. AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis. Ann N Y Acad Sci. 2007;1106:1–19.

    Article  CAS  PubMed  Google Scholar 

  68. Campbell TB, Broxmeyer HE. CD26 inhibition and hematopoiesis: a novel approach to enhance transplantation. Front Biosci. 2008;13:1795–805.

    Article  CAS  PubMed  Google Scholar 

  69. Bergman AJ, Stevens C, Zhou Y, Yi B, Laethem M, M DS, Snyder K, Hilliard D, Tanaka W, Zeng W, Tanen M, Wang AQ, Chen L, Winchell G, Davies MJ, Ramael S, Wagner JA, Herman GA. Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: a double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin Ther. 2006;28:55–72.

    Article  CAS  PubMed  Google Scholar 

  70. Kim KR, Rhee SD, Kim HY, Jung WH, Yang SD, Kim SS, Ahn JH, Cheon HG. KR-62436, 6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonitr ile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activity. Eur J Pharmacol. 2005;518:63–70.

    Article  CAS  PubMed  Google Scholar 

  71. Farag SS, Srivastava S, Messina-Graham S, Schwartz J, Robertson MJ, Abonour R, Cornetta K, Wood L, Secrest A, Strother RM, Jones DR, Broxmeyer HE. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev. 2013;22:1007–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Brunstein CG, Gutman JA, Weisdorf DJ, Woolfrey AE, Defor TE, Gooley TA, Verneris MR, Appelbaum FR, Wagner JE, Delaney C. Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood. 2010;116:4693–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Eapen M, Rocha V, Sanz G, Scaradavou A, Zhang MJ, Arcese W, Sirvent A, Champlin RE, Chao N, Gee AP, Isola L, Laughlin MJ, Marks DI, Nabhan S, Ruggeri A, Soiffer R, Horowitz MM, Gluckman E, Wagner JE, Center for International Blood and Marrow Transplant Research, The Acute Leukemia Working Party, National Cord Blood Program of the New York Blood Center. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010;11:653–60.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, Jacobsen N, Ruutu T, de Lima M, Finke J, Frassoni F, Gluckman E. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351:2276–85.

    Article  CAS  PubMed  Google Scholar 

  75. Sanz J, Boluda JC, Martin C, Gonzalez M, Ferra C, Serrano D, de Heredia CD, Barrenetxea C, Martinez AM, Solano C, Sanz MA, Sanz GF. Single-unit umbilical cord blood transplantation from unrelated donors in patients with hematological malignancy using busulfan, thiotepa, fludarabine and ATG as myeloablative conditioning regimen. Bone Marrow Transpl. 2012;47:1287–93.

    Article  CAS  Google Scholar 

  76. Takahashi S, Ooi J, Tomonari A, Konuma T, Tsukada N, Oiwa-Monna M, Fukuno K, Uchiyama M, Takasugi K, Iseki T, Tojo A, Yamaguchi T, Asano S. Comparative single-institute analysis of cord blood transplantation from unrelated donors with bone marrow or peripheral blood stem-cell transplants from related donors in adult patients with hematologic malignancies after myeloablative conditioning regimen. Blood. 2007:109:1322–30.

    Article  CAS  PubMed  Google Scholar 

  77. Velez de Mendizabal N, Strother RM, Farag SS, Broxmeyer HE, Messina-Graham S, Chitnis SD, Bies RR. (2013). Modelling the sitagliptin effect on dipeptidyl peptidase-4 activity in adults with haematological malignancies after umbilical cord blood haematopoietic cell transplantation. Clin Pharmacokinet. 2014;53(3)247–59.

    Article  Google Scholar 

  78. Broxmeyer HE, Farag S. Background and future considerations for human cord blood hematopoietic cell transplantation, including economic concerns. Stem Cells Dev. 2013;22(Suppl 1):103–10.

    Article  PubMed  Google Scholar 

  79. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122:491–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by grants from the V Foundation for Cancer Research, and Public Service R01HL112669 from the National Institutes of Health (NIH) of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif S. Farag MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farag, S., Davis, T. (2014). Targeting Homing to Enhance Engraftment Following Umbilical Cord Blood Stem Cell Transplantation. In: Ballen, K. (eds) Umbilical Cord Blood Banking and Transplantation. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-06444-4_13

Download citation

Publish with us

Policies and ethics