Advertisement

Yarrowia lipolytica in Biotechnological Applications

  • Farshad Darvishi HarzeviliEmail author
Chapter
Part of the SpringerBriefs in Microbiology book series (BRIEFSMICROBIOL)

Abstract

The nonconventional yeast Yarrowia lipolytica has been developed as a versatile and attractive tool for a large variety of biotechnological applications. This yeast has several physiological properties with industrial significance. Y. lipolytica uses hydrophobic substrates such as n-alkanes, oils, fats, and fatty acids as low-cost carbon sources. The yeast is able to produce a set of diverse added-value metabolites when grown on such low-value carbon sources. The useful physiological properties of the yeast have been used in various biotechnological processes ranging from enzymes, organic acids, single cell protein, single cell oil, or heterologous protein production to fatty acids bioconversions or bioremediation of environmental pollutants. This chapter presents a review of biotechnological applications of Y. lipolytica as high-throughput yeast in extracellular enzymes, organic acids and heterologous protein production, food and pharmaceutical industry, fine chemistry, and waste treatment as well as covers the recent developments in the application of the yeast in some fields.

Keywords

Yarrowia lipolytica Biotechnological applications Extracellular enzymes Organic acids Biotransformations Pharmaceutical Bioremediation Biodiesel Biosensor Heterologous protein expression 

References

  1. Abunyewa AAO, Laing E, Hugo A, Viljoen BC (2000) The population change of yeasts in commercial salami. Food Microbiol 17(4):429–438Google Scholar
  2. Addis E, Fleet GH, Cox JM, Kolak D, Leung T (2001) The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses. Int J Food Microbiol 69(1–2):25–36PubMedGoogle Scholar
  3. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Materials Letters 63 (15):1231–1234. doi:http://dx.doi.org/10.1016/j.matlet.2009.02.042 Google Scholar
  4. Aguedo M, Gomes N, Garcia E, Wache Y, Mota M, Teixeira JA, Belo I (2005) Decalactone production by Yarrowia lipolytica under increased O2 transfer rates. Biotechnol Lett 27(20):1617–1621PubMedGoogle Scholar
  5. Ali S, Shultz JL, Haq I (2007) High performance microbiological transformation of l-tyrosine to l-dopa by Yarrowia lipolytica NRRL-143. BMC Biotechnol 7(50):1–7Google Scholar
  6. Alkasrawi M, Nandakumar R, Margesin R, Schinner F, Mattiasson B (1999) A microbial biosensor based on Yarrowia lipolytica for the off-line determination of middle-chain alkanes. Biosens Bioelectron 14(8–9):723–727PubMedGoogle Scholar
  7. Alloue W, Destain J, Medjoub T, Ghalfi H, Kabran P, Thonart P (2008a) Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques. Appl Biochem Biotechnol 150(1):51–63. doi: 10.1007/s12010-008-8148-9 PubMedGoogle Scholar
  8. Alloue WAM, Destain J, Amighi K, Thonart P (2007) Storage of Yarrowia lipolytica lipase after spray-drying in the presence of additives. Process Biochem 42(9):1357–1361Google Scholar
  9. Alloue WAM, Destain J, Ongena M, Blecker C, Thonart P (2008b) Effect of monopropylene glycol and gamma irradiation on Yarrowia lipolytica lipase stabilization. Prep Biochem Biotechnol 38(3):217–228PubMedGoogle Scholar
  10. Amaral PFF, da Silva JM, Lehocky M, Barros-Timmons AMV, Coelho MAZ, Marrucho IM, Coutinho JAP (2006) Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem 41(8):1894–1898Google Scholar
  11. Anastassiadis S, Aivasidis A, Wandrey C (2002) Citric acid production by Candida strains under intracellular nitrogen limitation. Appl Microbiol Biotechnol 60(1–2):81–87PubMedGoogle Scholar
  12. Aniol M, Huszcza E (2005) Biotransformation of 6,7-epoxygeraniol by fungi. Appl Microbiol Biotechnol 68(3):311–315PubMedGoogle Scholar
  13. Aracagok YD, Cihangir N (2013) Decolorization of reactive black 5 by Yarrowia lipolytica NBRC 1658. Am J Microbiol Res 1(2):16–20Google Scholar
  14. Arfi K, Spinnler H, Tache R, Bonnarme P (2002) Production of volatile compounds by cheese-ripening yeasts: requirement for a methanethiol donor for S-methyl thioacetate synthesis by Kluyveromyces lactis. Appl Microbiol Biotechnol 58(4):503–510. doi: 10.1007/s00253-001-0925-0 PubMedGoogle Scholar
  15. Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34(3):209–247. doi: 10.1080/10643380490279932 Google Scholar
  16. Bankar A, Kumar A, Zinjarde S (2009a) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84(5):847–865. doi: 10.1007/s00253-009-2156-8 PubMedGoogle Scholar
  17. Bankar AV, Kumar AR, Zinjarde SS (2009b) Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. Journal of Hazardous Materials 170 (1):487–494. doi:http://dx.doi.org/10.1016/j.jhazmat.2009.04.070 Google Scholar
  18. Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Nonconventional Yeasts in Biotechnology. Springer Berlin Heidelberg, pp 313–388. doi: 10.1007/978-3-642-79856-6_10
  19. Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19(4):219–237PubMedGoogle Scholar
  20. Batista SB, Mounteer AH, Amorim FR, Totola MR (2006) Isolation and characterization of biosurfactant/bioemulsifier producing bacteria from petroleum contaminated sites. Bioresour Technol 97:868–875PubMedGoogle Scholar
  21. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31(5):647–654. doi: 10.1002/ceat.200800063 Google Scholar
  22. Beckerich JM, Baudevin AB, Gaillardin C (1998) Yarrowia lipolytica: a model organism for protein secretion studies. Int Microbiol 1:123–130PubMedGoogle Scholar
  23. Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M (2009) Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research 48 (6):375–387. doi:http://dx.doi.org/10.1016/j.plipres.2009.08.005
  24. Beopoulos A, Desfougéres T, Sabirova J, Nicaud JM (2010) Yarrowia lipolytica as a cell factory for oleochemical biotechnology. In: Timmis K (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer Berlin Heidelberg, pp 3003–3010. doi: 10.1007/978-3-540-77587-4_223
  25. Berovic M, Legisa M (2007) Citric acid production. In: El-Gewely MR (ed) Biotechnology Annual Review, vol Volume 13. Elsevier, pp 303–343. doi:http://dx.doi.org/10.1016/S1387-2656(07)13011-8
  26. Bintsis T, Robinson RK (2004) A study of the effects of adjunct cultures on the aroma compounds of Feta-type cheese. Food Chem 88(3):435–441Google Scholar
  27. Blanchinroland S, Otero RRC, Gaillardin C (1994) Two upstream UAS contol expression of the XPR2 gene encoding an extracellular alkaline protease in the yeast Yarrowia lipolytica. Mol Cell Biol 14(1):327–338Google Scholar
  28. Blazeck J, Liu L, Redden H, Alper H (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol 77(22):7905–7914. doi: 10.1128/aem.05763-11 PubMedCentralPubMedGoogle Scholar
  29. Böer E, Steinborn G, Kunze G, Gellissen G (2007) Yeast expression platforms. Appl Microbiol Biotechnol 77:513–523. doi: 10.1007/s00253-007-1209-0 PubMedGoogle Scholar
  30. Braga A, Belo I (2013) Immobilization of Yarrowia lipolytica for aroma production from castor oil. Appl Biochem Biotechnol 169(7):2202–2211. doi: 10.1007/s12010-013-0131-4 PubMedGoogle Scholar
  31. Brocklehurst TF, Lund BM (1985) Microbiological changes in cottage cheese varieties during storage at +7 °C. Food Microbiology 2 (3):207–233. doi:http://dx.doi.org/10.1016/0740-0020(85)90036-X
  32. Carreira A, Dillinger K, Eliskases-Lechner F, Loureiro V, Ginzinger W, Rohm H (2002) Influence of selected factors on browning of Camembert cheese. J Dairy Res 69(2):281–292PubMedGoogle Scholar
  33. Carreira A, Ferreira LM, Loureiro V (2001) Brown pigments produced by Yarrowia lipolytica result from extracellular accumulation of homogentisic acid. Appl Environ Microbiol 67(8):3463–3468PubMedCentralPubMedGoogle Scholar
  34. Chebeňová-Turcovská V, Ženišová K, Kuchta T, Pangallo D, Brežná B (2011) Culture-independent detection of microorganisms in traditional Slovakian bryndza cheese. International Journal of Food Microbiology 150 (1):73–78. doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2011.07.020 Google Scholar
  35. Cheng SC, Ogrydziak DM (1986) Extracellular RNase produced by Yarrowia lipolytica. J Bacteriol 168(2):581–589PubMedCentralPubMedGoogle Scholar
  36. Cheng SC, Ogrydziak DM (1987) Processing and secretion of the Yarrowia lipolytica RNase. J Bacteriol 169(4):1433–1440PubMedCentralPubMedGoogle Scholar
  37. Chernyavskaya OG, Shishkanova NV, Finogenova TV (1997) Biosynthesis of α-ketoglutaric acid from ethanol by yeasts. Appl Biochem Microbiol 33(3):261–265Google Scholar
  38. Chernyavskaya OG, Shishkanova NV, Il’chenko AP, Finogenova TV (2000) Synthesis of α-ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol. Appl Microbiol Biotechnol 53(2):152–158PubMedGoogle Scholar
  39. Cho EM, Lee HS, Eom CY, Ohta A (2010) Construction of high sensitive detection system for endocrine disruptors with yeast n-alkane-assimilating Yarrowia lipolytica. J Microbiol Biotechnol 20(11):1563–1570PubMedGoogle Scholar
  40. Choupina A, Gonzalez F, Morin M, Burguillo F, Ferminan E, Dominguez A (1999) The lipase system of Yarrowia lipolytica. Curr Genet 35:297Google Scholar
  41. Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48(4):747–750PubMedCentralPubMedGoogle Scholar
  42. Cirigliano MC, Carman GM (1985) Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50(4):846–850PubMedCentralPubMedGoogle Scholar
  43. Darvishi F (2012a) Expression of native and mutant extracellular lipases from Yarrowia lipolytica in Saccharomyces cerevisiae. Microb Biotechnol 5(5):634–641. doi: 10.1111/j.1751-7915.2012.00354.x PubMedCentralPubMedGoogle Scholar
  44. Darvishi F (2012b) Microbial biotechnology in olive oil industry. In: Boskou D (ed) Olive oil: constituents, quality, health properties and bioconversions. InTech, Rijeka, pp 309–330Google Scholar
  45. Darvishi F, Destain J, Nahvi I, Thonart P, Zarkesh-Esfahani H (2011) High-level production of extracellular lipase by Yarrowia lipolytica mutants from methyl oleate. New Biotechnol 28(6):756–760. doi: 10.1016/j.nbt.2011.02.002 Google Scholar
  46. Darvishi F, Destain J, Nahvi I, Thonart P, Zarkesh-Esfahani H (2012) Effect of additives on freeze-drying and storage of Yarrowia lipolytica lipase. Appl Biochem Biotechnol 168(5):1101–1107. doi: 10.1007/s12010-012-9844-z PubMedGoogle Scholar
  47. Darvishi F, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2009) Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica Yeast. J Biomed Biotechnol 2009. doi: 10.1155/2009/562943
  48. de Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24(2):134–142. doi:http://dx.doi.org/10.1016/j.biotechadv.2005.08.004 Google Scholar
  49. De Freitas I, Pinon N, Maubois J-L, Lortal S, Thierry A (2009) The addition of a cocktail of yeast species to Cantalet cheese changes bacterial survival and enhances aroma compound formation. Int J Food Microbiol 129(1):37–42. doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2008.10.026 Google Scholar
  50. De Wit M, Osthoff G, Viljoen BC, Hugo A (2005) A comparative study of lipolysis and proteolysis in Cheddar cheese and yeast-inoculated Cheddar cheeses during ripening. Enzyme Microb Technol 37(6):606–616Google Scholar
  51. Destain J, Roblain D, Thonart P (1997) Improvement of lipase production from Yarrowia lipolytica. Biotechnol Lett 19(2):105–107Google Scholar
  52. Dhanam Jayam G, Kannan S (2013) L-asparaginase: types perspectives and applications. Adv Bio Tech 13(5):1–5Google Scholar
  53. Domínguez A, Deive FJ, Angeles Sanromán M, Longo MA (2010) Biodegradation and utilization of waste cooking oil by Yarrowia lipolytica CECT 1240. Eur J Lipid Sci Technol 112(11):1200–1208. doi: 10.1002/ejlt.201000049 Google Scholar
  54. Encinas JP, Lopez-Diaz TM, Garcia-Lopez ML, Otero A, Moreno B (2000) Yeast populations on Spanish fermented sausages. Meat Sci 54(3):203–208PubMedGoogle Scholar
  55. Endrizzi A, Awadé AC, Belin J-M (1993) Presumptive involvement of methyl ricinoleate β-oxidation in the production of γ-decalactone by the yeast Pichia guilliermondii. FEMS Microbiol Lett 114(2):153–159. doi: 10.1111/j.1574-6968.1993.tb06566.x Google Scholar
  56. Ercoli B, Fuganti C, Grasselli P, Servi S, Allegrone G, Barbeni M, Pisciotta A (1992) Stereochemistry of the biogeneration of C-10 and C-12 gamma lactones in Yarrowia lipolytica and Pichia ohmeri. Biotechnol Lett 14(8):665–668. doi: 10.1007/BF01021639 Google Scholar
  57. Farbood MI, Willis BJ (1985) Production of γ-decalactone. US4560656 AGoogle Scholar
  58. Ferrara MA, Almeida DS, Siani AC, Lucchetti L, Lacerda PSB, Freitas A, Tappin MRR, Bon EPS (2014) Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica. Brazilian J Microbiol 44(4):1075–1080. doi: 10.1590/S1517-83822014005000008 Google Scholar
  59. Ferreira AD, Viljoen BC (2003) Yeasts as adjunct starters in matured Cheddar cheese. Int J Food Microbiol 86(1–2):131–140PubMedGoogle Scholar
  60. Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005a) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543PubMedGoogle Scholar
  61. Fickers P, Fudalej F, Dall MTL, Casaregola S, Gaillardin C, Thonart P, Nicaud JM (2005b) Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol 42(3):264–274PubMedGoogle Scholar
  62. Fickers P, Fudalej F, Nicaud J-M, Destain J, Thonart P (2005c) Selection of new over-producing derivatives for the improvement of extracellular lipase production by the non-conventional yeast Yarrowia lipolytica. J Biotechnol 115(4):379–386PubMedGoogle Scholar
  63. Fickers P, Marty A, Nicaud JM (2011) The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 29(6):632–644PubMedGoogle Scholar
  64. Fickers P, Ongena M, Destain J, Weekers F, Thonart P (2006) Production and down-stream processing of an extracellular lipase from the yeast Yarrowia lipolytica. Enzyme Microb Technol 38(6):756–759Google Scholar
  65. Finogenova TV, Kamzolova SV, Dedyukhina EG, Shishkanova NV, Il’chenko AP, Morgunov IG, Chernyavskaya OG, Sokolov AP (2002) Biosynthesis of citric and isocitric acids from ethanol by mutant Yarrowia lipolytica N 1 under continuous cultivation. Appl Microbiol Biotechnol 59(4–5):493–500PubMedGoogle Scholar
  66. Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41(5):418–425Google Scholar
  67. Finogenova TV, Puntus IF, Karnzolova SV, Lunina YN, Monastyrskaya SE, Morgunov IG, Boronin AM (2008) Mutant Yarrowia lipolytica strains producing citric acid from glucose. Appl Biochem Microbiol 44(2):197–202Google Scholar
  68. Fontes GC, Amaral PFF, Nele M, Coelho MAZ (2010) Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J Biomed Biotechnol 2010. doi: 10.1155/2010/821306
  69. Forster A, Aurich A, Mauersberger S, Barth G (2007a) Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 75(6):1409–1417PubMedGoogle Scholar
  70. Forster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007b) Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 77(4):861–869PubMedGoogle Scholar
  71. Foschino R, Picozzi C, Borghi M, Cerliani MC, Cresci E (2006) Investigation on the microflora of Caprino Lombardo cheese from raw goat milk. Ital J Food Sci 18(1):33–49Google Scholar
  72. Freitas AC, Pintado AE, Pintado ME, Malcata FX (1999) Role of dominant microflora of Picante cheese on proteolysis and lipolysis. Int Dairy J 9(9):593–603Google Scholar
  73. Fung DY, Liang C (1990) Critical review of isolation, detection, and identification of yeasts from meat products. Crit Rev Food Sci Nutr 29:341–379PubMedGoogle Scholar
  74. Galabova D, Tuleva B, Balasheva M (1993) Phosphatase activity during growth of Yarrowia lipolytica. FEMS Microbiol Lett 109(1):45–48PubMedGoogle Scholar
  75. Gandhi NN (1997) Applications of lipase. JAOCS 74:621–634Google Scholar
  76. Gao LM, Chi ZM, Sheng J, Wang L, Li J, Gong F (2007) Inulinase-producing marine yeasts: evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microb Ecol 54(4):722–729PubMedGoogle Scholar
  77. Garcia S, Prado M, Degano R, Dominguez A (2002) A copper-responsive transcription factor, CRF1, mediates copper and cadmium resistance in Yarrowia lipolytica. J Biol Chem 277(40):37359–37368PubMedGoogle Scholar
  78. Gardini F, Suzzi G, Lombardi A, Galgano F, Crudele MA, Andrighetto C, Schirone M, Tofalo R (2001) A survey of yeasts in traditional sausages of southern Italy. FEMS Yeast Res 1(2):161–167PubMedGoogle Scholar
  79. Gardini F, Tofalo R, Belletti N, Iucci L, Suzzi G, Torriani S, Guerzoni ME, Lanciotti R (2006) Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese. Food Microbiol 23(7):641–648PubMedGoogle Scholar
  80. Gente S, Larpin S, Cholet O, Gueguen M, Vernoux JP, Desmasures N (2007) Development of primers for detecting dominant yeasts in smear-ripened cheeses. J Dairy Res 74(2):137–145PubMedGoogle Scholar
  81. Gkatzionis K, Hewson L, Hollowood T, Hort J, Dodd CER, Linforth RST (2013) Effect of Yarrowia lipolytica on blue cheese odour development: flash profile sensory evaluation of microbiological models and cheeses. Int Dairy J 30(1):8–13. doi:http://dx.doi.org/10.1016/j.idairyj.2012.11.010 Google Scholar
  82. Glover DJ, McEwen RK, Thomas CR, Young TW (1997) pH-regulated expression of the acid and alkaline extracellular proteases of Yarrowia lipolytica. Microbiology-UK 143:3045–3054Google Scholar
  83. Goerges S, Aigner U, Silakowski B, Scherer S (2006) Inhibition of Listeria monocytogenes by food-borne yeasts. Appl Environ Microbiol 72(1):313–318. doi: 10.1128/aem.72.1.313-318.2006 PubMedCentralPubMedGoogle Scholar
  84. Golić N, Čadež N, Terzić-Vidojević A, Šuranská H, Beganović J, Lozo J, Kos B, Šušković J, Raspor P, Topisirović L (2013) Evaluation of lactic acid bacteria and yeast diversity in traditional white pickled and fresh soft cheeses from the mountain regions of Serbia and lowland regions of Croatia. Int J Food Microbiol 166(2):294–300. doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2013.05.032
  85. Gomes N, Aguedo M, Teixeira J, Belo I (2007) Oxygen mass transfer in a biphasic medium: influence on the biotransformation of methyl ricinoleate into γ-decalactone by the yeast Yarrowia lipolytica. Biochem Eng J 35(3):380–386Google Scholar
  86. Gomes N, Braga A, Teixeira J, Belo I (2013) Impact of lipase-mediated hydrolysis of castor oil on γ-decalactone production by Yarrowia lipolytica. J Am Oil Chem Soc 90(8):1131–1137. doi: 10.1007/s11746-013-2231-2 Google Scholar
  87. Gomes N, Teixeira J, Belo I (2012) Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate. Biotechnol Lett 34(4):649–654. doi: 10.1007/s10529-011-0824-0 PubMedGoogle Scholar
  88. Gonçalves C, Lopes M, Ferreira JP, Belo I (2009) Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresour Technol 100(15):3759–3763. doi:http://dx.doi.org/10.1016/j.biortech.2009.01.004 Google Scholar
  89. Gonzalez-Lopez CI, Szabo R, Blanchin-Roland S, Gaillardin C (2002) Genetic control of extracellular protease synthesis in the yeast Yarrowia lipolytica. Genetics 160(2):417–427PubMedCentralPubMedGoogle Scholar
  90. Gori K, Ryssel M, Arneborg N, Jespersen L (2013) Isolation and identification of the microbiota of Danish farmhouse and industrially produced surface-ripened Cheeses. Microb Ecol 65(3):602–615. doi: 10.1007/s00248-012-0138-3 PubMedCentralPubMedGoogle Scholar
  91. Grenfell-Lee D, Zeller S, Cardoso R, Pucaj K (2014) The safety of β-carotene from Yarrowia lipolytica. Food Chem Toxicol 65(0):1–11. doi:http://dx.doi.org/10.1016/j.fct.2013.12.010
  92. Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, van Dijck PWM, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40(3):187–206. doi: 10.3109/1040841X.2013.770386 PubMedGoogle Scholar
  93. Groguenin A, Waché Y, Garcia EE, Aguedo M, Husson F, LeDall M-T, Nicaud J-M, Belin J-M (2004) Genetic engineering of the β-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds. J Mol Catal B Enzym 28(2–3):75–79Google Scholar
  94. Guieysse D, Sandoval G, Faure L, Nicaud JM, Monsan P, Marty A (2004) New efficient lipase from Yarrowia lipolytica for the resolution of 2-bromo-arylacetic acid esters. Tetrahedron Asymmetry 15(22):3539–3543Google Scholar
  95. Guo Y, Song H, Wang Z, Ding Y (2012) Expression of POX2 gene and disruption of POX3 genes in the industrial Yarrowia lipolytica on the γ-decalactone production. Microbiol Res 167(4):246–252. doi:http://dx.doi.org/10.1016/j.micres.2011.10.003
  96. Hamilton GE, Luechau F, Burton SC, Lyddiatt A (2000) Development of a mixed mode adsorption process for the direct product sequestration of an extracellular protease from microbial batch cultures. J Biotechnol 79(2):103–115PubMedGoogle Scholar
  97. Hassanshahian M, Tebyanian H, Cappello S (2012) Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar Pollut Bull 64(7):1386–1391. doi:http://dx.doi.org/10.1016/j.marpolbul.2012.04.020
  98. Heretsch P, Thomas F, Aurich A, Krautscheid H, Sicker D, Giannis A (2008) Syntheses with a Chiral Building Block from the citric acid cycle: (2R,3S)-isocitric acid by fermentation of sunflower oil. Angew Chem Int Ed 47(10):1958–1960. doi: 10.1002/anie.200705000 Google Scholar
  99. Holz M, Förster A, Mauersberger S, Barth G (2009) Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 81(6):1087–1096. doi: 10.1007/s00253-008-1725-6 PubMedGoogle Scholar
  100. Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Pötter M, Marx A, Barth G (2011) Overexpression of α-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol 89(5):1519–1526. doi: 10.1007/s00253-010-2957-9 PubMedGoogle Scholar
  101. Huang C, Chen X-f, Xiong L, Chen X-d, Ma L-l, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31(2):129–139. doi:http://dx.doi.org/10.1016/j.biotechadv.2012.08.010
  102. Il’chenko AP, Chernyavskaya OG, Shishkanova NV, Finogenova TV (2001) Metabolic characteristics of the mutant Yarrowia lipolytica strain 1 producing α-ketoglutaric and citric acids from ethanol and the effect of [NH4+] and [O2] on yeast respiration and acidogenesis. Microbiology 70(2):151–157Google Scholar
  103. Il’chenko AP, Chernyavskaya OG, Shishkanova NV, Finogenova TV (2002) Metabolism of Yarrowia lipolytica grown on ethanol under conditions promoting the production of α-ketoglutaric and citric acids: a comparative study of the central metabolism enzymes. Microbiology 71(3):269–274Google Scholar
  104. Il’chenko AP, Chernyavskaya OG, Shishkanova NV, Finogenova TV (2003) Biochemical characterization of the yeast Yarrowia lipolytica overproducing carboxylic acids from ethanol: nitrogen metabolism enzymes. Microbiology 72(4):418–422Google Scholar
  105. Ito H, Inouhe M, Tohoyama H, Joho M (2007a) Characteristics of copper tolerance in Yarrowia lipolytica. Biometals 20(5):773–780PubMedGoogle Scholar
  106. Ito H, Inouhe M, Tohoyama H, Joho M (2007b) Effect of copper on acid phosphatase activity in yeast Yarrowia lipolytica. Zeitschrift Fur Naturforschung C-A J Biosci 62(1–2):70–76Google Scholar
  107. Jain MR, Zinjarde SS, Deobagkar DD, Deobagkar DN (2004) 2,4,6-Trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Mar Pollut Bull 49(9–10):783–788PubMedGoogle Scholar
  108. Jolivet P, Bergeron E, Benyair H, Meunier JC (2001) Characterization of major protein phosphatases from selected species of Kluyveromyces. Comparison with protein phosphatases from Yarrowia lipolytica. Can J Microbiol 47(9):861–870PubMedGoogle Scholar
  109. Jolivet P, Queiroz-Claret C, Bergeron E, Meunier J-C (1998) Characterization of an exocellular protein phosphatase with dual substrate specificity from the yeast Yarrowia lipolytica. Int J Biochem Cell Biol 30(7):783–796PubMedGoogle Scholar
  110. Juszczyk P, Tomaszewska L, Kita A, Rymowicz W (2013) Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production. Bioresour Technol 137(0):124–131. doi:http://dx.doi.org/10.1016/j.biortech.2013.03.010
  111. Kamzolova S, Chiglintseva M, Lunina J, Morgunov I (2012a) α-Ketoglutaric acid production by Yarrowia lipolytica and its regulation. Appl Microbiol Biotechnol 96(3):783–791. doi: 10.1007/s00253-012-4222-x PubMedGoogle Scholar
  112. Kamzolova S, Morgunov I (2013) α-Ketoglutaric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 97(12):5517–5525. doi: 10.1007/s00253-013-4772-6 PubMedGoogle Scholar
  113. Kamzolova S, Yusupova A, Vinokurova N, Fedotcheva N, Kondrashova M, Finogenova T, Morgunov I (2009) Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol. Appl Microbiol Biotechnol 83(6):1027–1034. doi: 10.1007/s00253-009-1948-1 PubMedGoogle Scholar
  114. Kamzolova SV, Finogenova TV, Lunina YN, Perevoznikova OA, Minachova LN, Morgunov IG (2007) Characteristics of the growth on rapeseed oil and synthesis of citric and isocitric acids by Yarrowia lipolytica yeasts. Microbiology 76(1):20–24Google Scholar
  115. Kamzolova SV, Finogenova TV, Morgunov IG (2008) Microbiological production of citric and isocitric acids from sunflower oil. Food Technol Biotechnol 46(1):51–59Google Scholar
  116. Kamzolova SV, Vinokurova NG, Yusupova AI, Morgunov IG (2012b) Succinic acid production from n-alkanes. Eng Life Sci 12(5):560–566. doi: 10.1002/elsc.201100241 Google Scholar
  117. Karanam SK, Medicherla NR (2010) Application of Doehlert experimental design for the optimization of medium constituents for the production of l-asparaginase from Palm Kernal cake (Elaeis guineensis). J Microbial Biochem Technol 2:7–12Google Scholar
  118. Kim HS, Ju JY, Suh JH, Shin CS (1999) Optimized fed-batch fermentation of l-beta-hydroxy isobutyric acid by Yarrowia lipolytica. Bioprocess Eng 20(3):189–193Google Scholar
  119. Kim J-T, Kang S, Woo J-H, Lee J-H, Jeong B, Kim S-J (2007) Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180. Appl Microbiol Biotechnol 74(4):820–828. doi: 10.1007/s00253-006-0727-5 PubMedGoogle Scholar
  120. Kumar K, Verma N (2012) The various sources and application of l-asparaginase. Asian J Biochem Pharm Res 2(3):197–205Google Scholar
  121. Kumura H, Tanoue Y, Tsukahara M, Tanaka T, Shimazaki K (2004) Screening of dairy yeast strains for probiotic applications. J Dairy Sci 87(12):4050–4056PubMedGoogle Scholar
  122. Kyong SH, Shin CS (2000) Optimized production of l-beta-hydroxybutyric acid by a mutant of Yarrowia lipolytica. Biotechnol Lett 22(13):1105–1110Google Scholar
  123. Lagos FM, Carballeira JD, Bermudez JL, Alvarez E, Sinisterra JV (2004) Highly stereoselective reduction of haloketones using three new yeasts: application to the synthesis of (S)-adrenergic beta-blockers related to propranolol. Tetrahedron Asymmetry 15(5):763–770Google Scholar
  124. Lagos FM, Del Campo C, Llama EF, Sinisterra JV (2002) New yeast strains for enantioselective production of halohydrin precursor of (S)-Propranolol. Enzyme Microb Technol 30(7):895–901Google Scholar
  125. Lanciotti R, Gianotti A, Baldi D, Angrisani R, Suzzi G, Mastrocola D, Guerzoni ME (2005a) Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Bioresour Technol 96(3):317–322PubMedGoogle Scholar
  126. Lanciotti R, Vannini L, Lopez CC, Gobbetti M, Guerzoni ME (2005b) Evaluation of the ability of Yarrowia lipolytica to impart strain-dependent characteristics to cheese when used as a ripening adjunct. Int J Dairy Technol 58(2):89–99Google Scholar
  127. Larpin-Laborde S, Imran M, Bonaïti C, Bora N, Gelsomino R, Goerges S, Irlinger F, Goodfellow M, Ward AC, Vancanneyt M, Swings J, Scherer S, Guéguen M, Desmasures N (2011) Surface microbial consortia from Livarot, a French smear-ripened cheese. Can J Microbiol 57(8):651–660. doi: 10.1139/w11-050 PubMedGoogle Scholar
  128. Lee JS, Kang EJ, Kim MO, Lee DH, Bae KS, Kim CK (2001) Identification of Yarrowia lipolytica Y103 and its degradability of phenol and 4-chlorophenol. J Microbiol Biotechnol 11(1):112–117Google Scholar
  129. Lee K-M, Kalyani D, Tiwari MK, Kim T-S, Dhiman SS, Lee J-K, Kim I-W (2012) Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour Technol 123(0):636–645. doi:http://dx.doi.org/10.1016/j.biortech.2012.07.066 Google Scholar
  130. Levinson WE, Kurtzman CP, Kuo TM (2007) Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microb Technol 41(3):292–295Google Scholar
  131. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756. doi: 10.1007/s00253-008-1625-9 PubMedGoogle Scholar
  132. Lopandic K, Zelger S, Banszky LK, Eliskases-Lechner F, Prillinger H (2006) Identification of yeasts associated with milk products using traditional and molecular techniques. Food Microbiol 23(4):341–350PubMedGoogle Scholar
  133. Lopes M, Araújo C, Aguedo M, Gomes N, Gonçalves C, Teixeira JA, Belo I (2009) The use of olive mill wastewater by wild type Yarrowia lipolytica strains: medium supplementation and surfactant presence effect. J Chem Technol Biotechnol 84(4):533–537. doi: 10.1002/jctb.2075 Google Scholar
  134. Lopes M, Gomes N, Goncalves C, Coelho MAZ, Mota M, Belo I (2008) Yarrowia lipolytica lipase production enhanced by increased air pressure. Lett Appl Microbiol 46(2):255–260PubMedGoogle Scholar
  135. López del Castillo-Lozano M, Delile A, Spinnler HE, Bonnarme P, Landaud S (2007) Comparison of volatile sulphur compound production by cheese-ripening yeasts from methionine and methionine–cysteine mixtures. Appl Microbiol Biotechnol 75(6):1447–1454. doi: 10.1007/s00253-007-0971-3 PubMedGoogle Scholar
  136. López MC, Domínguez A (1988) Purification and properties of a glycoprotein acid phosphatase from the yeast form of Yarrowia lipolytica. J Basic Microbiol 28(4):249–263. doi: 10.1002/jobm.3620280408 Google Scholar
  137. Lourens-Hattingh A, Viljoen BC (2002) Survival of dairy-associated yeasts in yoghurt and yoghurt-related products. Food Microbiol 19(6):597–604Google Scholar
  138. Madzak C, Beckerich J-M (2013) Heterologous protein expression and secretion in Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica, vol 25. Microbiology Monographs. Springer, Berlin, pp 1–76. doi: 10.1007/978-3-642-38583-4_1
  139. Madzak C, Blanchin-Roland S, Otero RRC, Gaillardin C (1999) Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter. Microbiology-UK 145:75–87Google Scholar
  140. Madzak C, Gaillardin C, Beckerich J-M (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109(1–2):63–81PubMedGoogle Scholar
  141. Madzak C, Treton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2(2):207–216PubMedGoogle Scholar
  142. Margesin R, Gander S, Zacke G, Gounot A, Schinner F (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7(6):451–458. doi: 10.1007/s00792-003-0347-2 PubMedGoogle Scholar
  143. Margesin R, Schinner F (1997) Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol Ecol 24(3):243–249Google Scholar
  144. Martinez-Lagos F, Sinisterra JV (2005) Enantioselective production of halohydrin precursor of propranolol catalysed by immobilized yeasts. J Mol Catal B-Enzym 36(1–6):1–7Google Scholar
  145. Matoba S, Fukayama J, Wing RA, Ogrydziak DM (1988) Intracellular precursors and secretion of alkaline extracellular protease of Yarrowia lipolytica. Mol Cell Biol 8(11):4904–4916PubMedCentralPubMedGoogle Scholar
  146. Matoba S, Ogrydziak DM (1989) A novel location for dipeptidyl aminopeptidase processing sites in the alkaline extracellular protease of Yarrowia lipolytica. J Biol Chem 264:6037–6043PubMedGoogle Scholar
  147. Matthäus F, Ketelhot M, Gatter M, Barth G (2014) Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl Environ Microbiol 80(5):1660–1669. doi: 10.1128/aem.03167-13 PubMedGoogle Scholar
  148. McEwen RK, Young TW (1998) Secretion and pH-dependent self-processing of the pro-form of the Yarrowia lipolytica acid extracellular protease. Yeast 14(12):1115–1125PubMedGoogle Scholar
  149. McKinlay J, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76(4):727–740. doi: 10.1007/s00253-007-1057-y PubMedGoogle Scholar
  150. Mirbagheri M, Nahvi I, Emtiazi G, Mafakher L, Darvishi F (2012) Taxonomic characterization and potential biotechnological applications of Yarrowia lipolytica isolated from meat and meat products. Jundishapur J Microbiol 5(1):346–351. doi: 10.5812/kowsar.20083645.2433 Google Scholar
  151. Mirończuk A, Furgała J, Rakicka M, Rymowicz W (2014) Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. J Ind Microbiol Biotechnol 41(1):57–64. doi: 10.1007/s10295-013-1380-5 PubMedCentralPubMedGoogle Scholar
  152. Moradi H, Asadollahi MA, Nahvi I (2013) Improved γ-decalactone production from castor oil by fed-batch cultivation of Yarrowia lipolytica. Biocatal Agric Biotechnol 2(1):64–68. doi:http://dx.doi.org/10.1016/j.bcab.2012.11.001
  153. Morgunov IG, Kamzolova SV, Perevoznikova OA, Shishkanova NV, Finogenova TV (2004) Pyruvic acid production by a thiamine auxotroph of Yarrowia lipolytica. Process Biochem 39(11):1469–1474Google Scholar
  154. Mounier J, Gelsomino R, Goerges S, Vancanneyt M, Vandemeulebroecke K, Hoste B, Scherer S, Swings J, Fitzgerald GF, Cogan TM (2005) Surface microflora of four smear-ripened cheeses. Appl Environ Microbiol 71(11):6489–6500PubMedCentralPubMedGoogle Scholar
  155. Nakazawa H, Enei H, Okumura S, Yamada H (1972) Synthesis of l-tryptophan from pyruvate, ammonia and indole. Agric Biol Chem 36(13):2523–2528Google Scholar
  156. Nicaud J-M, Fabre E, Gaillardin C (1989) Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr Genet 16(4):253–260. doi: 10.1007/BF00422111 PubMedGoogle Scholar
  157. Nicaud J-M, Madzak C, van den Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2(3):371–379PubMedGoogle Scholar
  158. Ogrydziak D (2013) Acid and alkaline extracellular proteases of Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica, vol 25. Microbiology Monographs. Springer, Berlin, pp 77–97. doi: 10.1007/978-3-642-38583-4_2
  159. Ogrydziak DM (1988) Production of alkaline extracellular protease by Yarrowia lipolytica. Crit Rev Biotechnol 8(3):177–187. doi: 10.3109/07388558809147555 Google Scholar
  160. Ogrydziak DM, Mortimer RK (1977) Genetics of extracellular protease production in Saccharomycopsis lipolytica. Genetics 87(4):621–632PubMedCentralPubMedGoogle Scholar
  161. Oogaki M, Nakahara T, Uchiyama H, Tabuchi T (1983) Extracellular production of D-(+)-2-hydroxyglutaric acid by Yarrowia lipolytica from glucose under aerobic thiamine deficient conditions. Agric Biol Chem 47:2619–2624Google Scholar
  162. Oswal N, Sarma PM, Zinjarde SS, Pant A (2002) Palm oil mill effluent treatment by a tropical marine yeast. Bioresour Technol 85(1):35–37PubMedGoogle Scholar
  163. Ota Y, Gomi K, Kato S, Sugiura T, Minoda Y (1982) Purification and some properties of cell-bound lipase from Saccharomycopsis lipolytica. Agric Biol Chem 46:2885–2893Google Scholar
  164. Ota Y, Oikawa S, Morimoto Y, Minoda Y (1984) Nutritional factors causing mycelial development of Saccharomycopsis lipolytica. Agric Biol Chem 48:1933–1940Google Scholar
  165. Otero RC, Gaillardin C (1996) Efficient selection of hygromycin-B-resistant Yarrowia lipolytica transformants. Appl Microbiol Biotechnol 46(2):143–148Google Scholar
  166. Otto C, Holz M, Barth G (2013) Production of organic acids by Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica, vol 25. Microbiology Monographs. Springer, Berlin, pp 137–149. doi: 10.1007/978-3-642-38583-4_5
  167. Otto C, Yovkova V, Aurich A, Mauersberger S, Barth G (2012) Variation of the by-product spectrum during α-ketoglutaric acid production from raw glycerol by overexpression of fumarase and pyruvate carboxylase genes in Yarrowia lipolytica. Appl Microbiol Biotechnol 95:905–917PubMedGoogle Scholar
  168. Pagot Y, Endrizzi A, Nicaud JM, Belin JM (1997) Utilization of an auxotrophic strain of the yeast Yarrowia lipolytica to improve γ-decalactone production yields. Lett Appl Microbiol 25(2):113–116PubMedGoogle Scholar
  169. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82(1):43–49PubMedGoogle Scholar
  170. Papanikolaou S, Aggelis G (2003) Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr Microbiol 46(6):398–402PubMedGoogle Scholar
  171. Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21:83–87Google Scholar
  172. Papanikolaou S, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2007) Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica. Electron J Biotechnol 10(3):425–435Google Scholar
  173. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58(3):308–312PubMedGoogle Scholar
  174. Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2008) Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour Technol 99(7):2419–2428PubMedGoogle Scholar
  175. Pereira-Meirelles FV, Rocha-Leao MHM, Sant’ Anna GL (2000) Lipase location in Yarrowia lipolytica cells. Biotechnol Lett 22(1):71–75Google Scholar
  176. Peters II, Nelson FE (1948) Preliminary characterization of the lipase of Mycotorula lipolytica. J Bacteriol 55(5):593–600PubMedCentralPubMedGoogle Scholar
  177. Pieters R, Hunger SP, Boos J, Rizzari C, Silverman L, Baruchel A, Goekbuget N, Schrappe M, Pui C-H (2011) l-asparaginase treatment in acute lymphoblastic leukemia. Cancer 117(2):238–249. doi: 10.1002/cncr.25489 PubMedCentralPubMedGoogle Scholar
  178. Pignede G, Wang HJ, Fudalej F, Gaillardin C, Seman M, Nicaud JM (2000a) Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol 182(10):2802–2810PubMedCentralPubMedGoogle Scholar
  179. Pignede G, Wang HJ, Fudalej F, Seman M, Gaillardin C, Nicaud JM (2000b) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66(8):3283–3289PubMedCentralPubMedGoogle Scholar
  180. Prillinger H, Molnar O, Eliskases-Lechner F, Lopandic K (1999) Phenotypic and genotypic identification of yeasts from cheese. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 75(4):267–283Google Scholar
  181. Puthli MS, Rathod VK, Pandit AB (2006) Enzymatic hydrolysis of castor oil: process intensification studies. Biochem Eng J 31(1):31–41. doi:http://dx.doi.org/10.1016/j.bej.2006.05.017 Google Scholar
  182. Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S (2013) Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J Contam Hydrol 146(0):63–73. doi:http://dx.doi.org/10.1016/j.jconhyd.2012.12.008 Google Scholar
  183. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233PubMedCentralPubMedGoogle Scholar
  184. Romero-Guido C, Belo I, Ta T, Cao-Hoang L, Alchihab M, Gomes N, Thonart P, Teixeira J, Destain J, Waché Y (2011) Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Appl Microbiol Biotechnol 89(3):535–547. doi: 10.1007/s00253-010-2945-0 PubMedGoogle Scholar
  185. Romero MC, Hammer E, Cazau MC, Arambarri AM (2001) Selection of autochthonous yeast strains able to degrade biphenyl. World J Microbiol Biotechnol 17(6):591–594Google Scholar
  186. Romero MC, Hammer E, Cazau MC, Arambarri AM (2002) Isolation and characterization of biarylic structure-degrading yeasts: hydroxylation potential of dibenzofuran. Environ Pollut 118(3):379–382Google Scholar
  187. Ross HM, Harden TJ, Nichol AW, Deeth HC (2000) Isolation and investigation of micro-organisms causing brown defects in mould-ripened cheeses. Australian J Dairy Technol 55(1):5–8Google Scholar
  188. Rufino RD, Sarubbo LA, Campos-Takaki GM (2007) Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 23:729–734Google Scholar
  189. Rufino RD, Sarubbo LA, Neta BB, Campos-Takaki GM (2008) Experimental design for the production of tensioactive agent by Candida lipolytica. J Ind Microbiol Biotechnol 35:907–914PubMedGoogle Scholar
  190. Rymowicz W, Rywińska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31(3):377–380. doi: 10.1007/s10529-008-9884-1 PubMedGoogle Scholar
  191. Rytting ME (2012) Role of l-asparaginase in acute lymphoblastic leukemia: focus on adult patients. Blood Lymphatic Cancer: Targets Ther 2:117–124Google Scholar
  192. Sabirova JS, Haddouche R, Van Bogaert IN, Mulaa F, Verstraete W, Timmis KN, Schmidt-Dannert C, Nicaud JM, Soetaert W (2011) The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microb Biotechnol 4(1):47–54. doi: 10.1111/j.1751-7915.2010.00187.x PubMedCentralPubMedGoogle Scholar
  193. Sarubbo LA, Farias CBB, Campos-Takaki GM (2007) Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr Microbiol 54:68–73PubMedGoogle Scholar
  194. Sarubbo LA, Porto AL, Campos-Takaki GM (1999) The use of babassu oil as substrate to produce bioemulsifiers by Candida lipolytica. Can J Microbiol 45:423–426PubMedGoogle Scholar
  195. Sasarman E, Dicuta C, Jurcoane S, Lupescu I, Groposila-Constantinescu D, Tcacenco L (2007) Influence of some nutritional factors on lipase production by Yarrowia lipolytica. Rom Biotechnol Lett 12(6):3483–3488Google Scholar
  196. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26(2):100–108PubMedGoogle Scholar
  197. Schmidt-Dannert C, Lee PC, Flickinger MC (2009) Carotenoids, microbial processes. In: Encyclopedia of industrial biotechnology. John Wiley & Sons, Inc. doi: 10.1002/9780470054581.eib178
  198. Scioli C, Vollaro L (1997) The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Water Res 31(10):2520–2524Google Scholar
  199. Shockey J, Chapital D, Gidda S, Mason C, Davis G, Klasson K, Cao H, Mullen R, Dyer J (2011) Expression of a lipid-inducible, self-regulating form of Yarrowia lipolytica lipase LIP2 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 92(6):1207–1217. doi: 10.1007/s00253-011-3505-y PubMedGoogle Scholar
  200. Simms PC, Ogrydziak DM (1981) Structural gene for the alkaline extracellular protease of Saccharomycopsis lipolytica. J Bacteriol 145(1):404–409PubMedCentralPubMedGoogle Scholar
  201. Singh Dhillon G, Kaur Brar S, Verma M, Tyagi RD (2011) Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol 4:505–529Google Scholar
  202. Smets B, Yin H, Esteve-Nuñez A (2007) TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 76(2):267–277. doi: 10.1007/s00253-007-1008-7 PubMedGoogle Scholar
  203. Soccol C, Vandenberghe L, Rodrigues C, Medeiros A, Larroche C, Pandey A (2008) Production of organic acids by solid-state fermentation. In: Pandey A, Soccol C, Larroche C (eds) Current developments in solid-state fermentation. Springer, New York, pp 205–229. doi: 10.1007/978-0-387-75213-6_10
  204. Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A (2006) New perspectives for citric acid production and application. Food Technol Biotechnol 44(2):141–149Google Scholar
  205. Stanko RT, Tietze DL, Arch JE (1992) Body composition, energy utilization, and nitrogen metabolism with a severely restricted diet supplemented with dihydroxyacetone and pyruvate. Am J Clin Nutr 55(4):771–776PubMedGoogle Scholar
  206. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799. doi:http://dx.doi.org/10.1016/j.bios.2010.09.005 Google Scholar
  207. Sugiura T, Ota Y, Minoda Y (1976) Partial characterisation of cell-bound lipase of Candida paralipolytica. Agric Biol Chem 40(12):2479–2480Google Scholar
  208. Świzdor A, Panek A, Milecka-Tronina N, Kołek T (2012) Biotransformations utilizing β-oxidation cycle reactions in the synthesis of natural compounds and medicines. Int J Mol Sci 13(12):16514–16543PubMedGoogle Scholar
  209. Ta T, Cao-Hoang L, Phan-Thi H, Tran H, Souffou N, Gresti J, Marechal P-A, Cavin J-F, Waché Y (2010) New insights into the effect of medium-chain-length lactones on yeast membranes. Importance of the culture medium. Appl Microbiol Biotechnol 87(3):1089–1099. doi: 10.1007/s00253-010-2560-0 PubMedGoogle Scholar
  210. Ta T, Cao-Hoang L, Romero-Guido C, Lourdin M, Phan-Thi H, Goudot S, Marechal P-A, Waché Y (2012) A shift to 50 °C provokes death in distinct ways for glucose- and oleate-grown cells of Yarrowia lipolytica. Appl Microbiol Biotechnol 93(5):2125–2134. doi: 10.1007/s00253-011-3537-3 PubMedGoogle Scholar
  211. Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM (2007) Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 44(6):531–542PubMedGoogle Scholar
  212. Thevenieau F, Nicaud J-M (2013) Microorganisms as sources of oils. OCL 20(6):D603Google Scholar
  213. Tomaszewska L, Rywińska A, Gładkowski W (2012) Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol 39(9):1333–1343. doi: 10.1007/s10295-012-1145-6 PubMedCentralPubMedGoogle Scholar
  214. Tréton BY, Dall MT, Gaillardin CM (1992) Complementation of Saccharomyces cerevisiae acid phosphatase mutation by a genomic sequence from the yeast Yarrowia lipolytica identifies a new phosphatase. Curr Genet 22(5):345–355. doi: 10.1007/BF00352435 PubMedGoogle Scholar
  215. Trindade JR, Freire MG, Amaral PFF, Coelho MAZ, Coutinho JAP, Marrucho IM (2008) Aging mechanisms of oil-in-water emulsions based on a bioemulsifier produced by Yarrowia lipolytica. Colloids and Surfaces A: physicochemical and engineering aspects 324(1–3):149–154. doi:http://dx.doi.org/10.1016/j.colsurfa.2008.04.009
  216. Trytek M, Fiedurek J, Skowronek M (2009) Biotransformation of (R)-(+)-limonene by the psychrotrophic fungus Mortierella minutissima in H2O2-oxygenated culture. Food Technol Biotechnol 47(2):131–136Google Scholar
  217. Tsigie YA, Wang C-Y, Kasim NS, Diem Q-D, Huynh L-H, Ho Q-P, Truong C-T, Ju Y-H (2012) Oil Production from Yarrowia lipolytica Po1 g Using Rice Bran Hydrolysate. J Biomed Biotechnol 2012:10. doi: 10.1155/2012/378384 Google Scholar
  218. Tsigie YA, Wang C-Y, Truong C-T, Ju Y-H (2011) Lipid production from Yarrowia lipolytica Po1 g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102(19):9216–9222. doi:http://dx.doi.org/10.1016/j.biortech.2011.06.047 Google Scholar
  219. Tsugawa R, Nakase T, Kobayashi T, Yamashita K, Okumura S (1969) Fermentation of n-paraffins by yeast. Part I. Fermentative production of a-ketoglutaric acid by Candida lipolytica. Agric Biol Chem 33:158–167Google Scholar
  220. Tsugawa R, Okumura S (1969) Fermentation of n-paraffins by yeast. Part II. α-ketoglutarate productivity of Candida lipolytica in various culture media. Agric Biol Chem 33:676–682Google Scholar
  221. Turki S, Ayed A, Chalghoumi N, Weekers F, Thonart P, Kallel H (2010) An enhanced process for the production of a highly purified extracellular lipase in the non-conventional Yeast Yarrowia lipolytica. Appl Biochem Biotechnol 160(5):1371–1385. doi: 10.1007/s12010-009-8599-7 PubMedGoogle Scholar
  222. van den Tempel T, Jakobsen M (2000) The technological characteristics of Debaryomyces hansenii and Yarrowia lipolytica and their potential as starter cultures for production of Danablu. Int Dairy J 10(4):263–270Google Scholar
  223. van Dyk MS, van Rensburg E, Rensburg IPB, Moleleki N (1998) Biotransformation of monoterpenoid ketones by yeasts and yeast-like fungi. J Mol Catal B: Enzym 5(1–4):149–154. doi:http://dx.doi.org/10.1016/S1381-1177(98)00024-1 Google Scholar
  224. Vance-Harrop MH, Gusmão NB, Campos-Takaki GM (2003) New bioemulsifiers produced by Candida lipolytica using d-glucose and babassu oil as carbon sources. Brazilian J Microbiol 34:120–123Google Scholar
  225. Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM (1999) Microbial production of citric acid. Braz Arch Biol Technol 42(3):263–276Google Scholar
  226. van Rensburg E, Moleleki N, van der Walt JP, Botes PJ, van Dyk MS (1997) Biotransformation of (+) limonene and (−) piperitone by yeasts and yeast-like fungi. Biotechnol Lett 19(8):779–782Google Scholar
  227. Vega R, Domínguez A (1988) Partial characterization of α-mannosidase from Yarrowia lipolytica. J Basic Microbiol 28(6):371–379. doi: 10.1002/jobm.3620280606 Google Scholar
  228. Viljoen BC, Lourens-Hattingh A, Ikalafeng B, Peter G (2003) Temperature abuse initiating yeast growth in yoghurt. Food Res Int 36(2):193–197. doi:http://dx.doi.org/10.1016/S0963-9969(02)00138-2 Google Scholar
  229. Waché Y (2013) Production of dicarboxylic acids and flagrances by Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica, vol 25. Microbiology Monographs. Springer, Berlin, pp 151–170. doi: 10.1007/978-3-642-38583-4_6
  230. Wache Y, Aguedo M, Choquet A, Gatfield IL, Nicaud JM, Belin JM (2001) Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica. Appl Environ Microbiol 67(12):5700–5704PubMedCentralPubMedGoogle Scholar
  231. Wache Y, Aguedo M, LeDall MT, Nicaud JM, Belin JM (2002) Optimization of Yarrowia lipolyticas β-oxidation pathway for γ-decalactone production. J Mol Catal B-Enzym 19:347–351Google Scholar
  232. Wache Y, Aguedo M, Nicaud JM, Belin JM (2003) Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica. Appl Microbiol Biotechnol 61(5–6):393–404PubMedGoogle Scholar
  233. Wache Y, Husson F, Feron G, Belin JM (2006) Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 89(3–4):405–416Google Scholar
  234. Wache Y, Laroche C, Bergmark K, Moller-Andersen C, Aguedo M, Le Dall MT, Wang HJ, Nicaud JM, Belin JM (2000) Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into γ-decalactone by Yarrowia lipolytica. Appl Environ Microbiol 66(3):1233–1236PubMedCentralPubMedGoogle Scholar
  235. Wang HJJ, Le Dall MT, Wache Y, Laroche C, Belin JM, Gaillardin C, Nicaud JM (1999) Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica. J Bacteriol 181(17):5140–5148PubMedCentralPubMedGoogle Scholar
  236. Wang X-F, Shen X-G, Sun Y-C, Zhao H-Y, Xu L, Liu Y, Yan Y-J (2012a) Production of Yarrowia lipolytica lipase LIP2 in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. J Chem Technol Biotechnol 87(4):553–558. doi: 10.1002/jctb.2749 Google Scholar
  237. Wang X, Sun Y, Ke F, Zhao H, Liu T, Xu L, Liu Y, Yan Y (2012b) Constitutive expression of Yarrowia lipolytica lipase LIP2 in Pichia pastoris using GAP as promoter. Appl Biochem Biotechnol 166(5):1355–1367. doi: 10.1007/s12010-011-9524-4 PubMedGoogle Scholar
  238. Welthagen JJ, Viljoen BC (1998) Yeast profile in Gouda cheese during processing and ripening. Int J Food Microbiol 41(3):185–194PubMedGoogle Scholar
  239. Westall S, Filtenborg O (1998) Spoilage yeasts of decorated soft cheese packed in modified atmosphere. Food Microbiol 15(2):243–249Google Scholar
  240. Wolter H, Laing E, Viljoen BC (2000) Isolation and identification of yeasts associated with intermediate moisture meats. Food Technol Biotechnol 38(1):69–75Google Scholar
  241. Wu L, Ge G, Wan J (2009) Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29. J Environ Sci 21:237–242Google Scholar
  242. Wyder MT, Puhan Z (1999a) Investigation of the yeast flora in smear ripened cheeses. Milchwissenschaft-Milk Sci Int 54(6):330–333Google Scholar
  243. Wyder MT, Puhan Z (1999b) Role of selected yeasts in cheese ripening: an evaluation in aseptic cheese curd slurries. Int Dairy J 9(2):117–124Google Scholar
  244. Yamada H, Kumagai H, Kashima N, Torii H, Enei H, Okumura S (1972) Synthesis of l-tyrosine from pyruvate, ammonia and phenol by crystalline tyrosine phenol lyase. Biochem Biophys Res Commun 46(2):370–374. doi:http://dx.doi.org/10.1016/S0006-291X(72)80148-7
  245. Yan Y, Zhang X, Chen D (2013) Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids. Bioresour Technol 131(0):179–187. doi:http://dx.doi.org/10.1016/j.biortech.2012.12.092
  246. Yang XS, Jiang ZB, Song HT, Jiang SJ, Madzak C, Ma LX (2009) Cell-surface display of the active mannanase in Yarrowia lipolytica with a novel surface-display system. Biotechnol Appl Biochem 54(3):171–176. doi: 10.1042/ba20090222 PubMedGoogle Scholar
  247. Yano Y, Oikawa H, Satomi M (2008) Reduction of lipids in fish meal prepared from fish waste by a yeast Yarrowia lipolytica. Int J Food Microbiol 121(3):302–307PubMedGoogle Scholar
  248. Young TW, Wadeson A, Glover DJ, Quincey RV, Butlin MJ, Kamei EA (1996) The extracellular acid protease gene of Yarrowia lipolytica: sequence and pH-regulated transcription. Microbiology-UK 142:2913–2921Google Scholar
  249. Yu M, Wen S, Tan T (2010) Enhancing production of Yarrowia lipolytica lipase Lip2 in Pichia pastoris. Eng Life Sci 10(5):458–464. doi: 10.1002/elsc.200900102 Google Scholar
  250. Yu MR, Lange S, Richter S, Tan TW, Schmid RD (2007) High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Protein Expr Purif 53(2):255–263PubMedGoogle Scholar
  251. Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102(10):6134–6140. doi:http://dx.doi.org/10.1016/j.biortech.2011.02.081
  252. Yue L, Chi Z, Wang L, Liu J, Madzak C, Li J, Wang X (2008) Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. J Microbiol Methods 72(2):116–123PubMedGoogle Scholar
  253. Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107(4):673–682. doi: 10.1002/bit.22859 PubMedGoogle Scholar
  254. Zhang B, Chen H, Li M, Gu Z, Song Y, Ratledge C, Chen Y, Zhang H, Chen W (2013) Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid. Microb Cell Fact 12(1):70PubMedCentralPubMedGoogle Scholar
  255. Zhang B, Rong C, Chen H, Song Y, Zhang H, Chen W (2012) De novo synthesis of trans-10, cis-12 conjugated linoleic acid in oleaginous yeast Yarrowia lipolytica. Microb Cell Fact 11(1):51PubMedCentralPubMedGoogle Scholar
  256. Zhou J, Zhou H, Du G, Liu L, Chen J (2010) Screening of a thiamine-auxotrophic yeast for α-ketoglutaric acid overproduction. Lett Appl Microbiol 51(3):264–271. doi: 10.1111/j.1472-765X.2010.02889.x PubMedGoogle Scholar
  257. Ziganshin AM, Gerlach R, Borch T, Naumov AV, Naumova RP (2007) Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Appl Environ Microbiol 73(24):7898–7905PubMedCentralPubMedGoogle Scholar
  258. Ziganshin AM, Naumova RP, Pannier AJ, Gerlach R (2010) Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica. Chemosphere 79(4):426–433. doi:http://dx.doi.org/10.1016/j.chemosphere.2010.01.051 Google Scholar
  259. Zinjarde SS (2014) Food-related applications of Yarrowia lipolytica. Food Chem 152(0):1–10. doi:http://dx.doi.org/10.1016/j.foodchem.2013.11.117 Google Scholar
  260. Zinjarde SS, Pant A (2000) Crude oil degradation by free and immobilized cells of Yarrowia lipolytica NCIM 3589. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 35(5):755–763Google Scholar
  261. Zinjarde SS, Pant A (2002a) Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J Basic Microbiol 42(1):67–73PubMedGoogle Scholar
  262. Zinjarde SS, Pant A, Deshpande MV (1998) Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water. Mycol Res 102(5):553–558Google Scholar
  263. Zinjarde SS, Pant AA (2002b) Hydrocarbon degraders from tropical marine environments. Mar Pollut Bull 44(2):118–121PubMedGoogle Scholar
  264. Zogała B, Robak M, Rymowicz W, Wzientek K, Rusin M, Maruszczak J (2005) Geoelectrical observation of Yarrowia lipolytica bioremediation of petrol-contaminated soil. Polish J Environ Stud 14(5):665–669Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Division of Microbiology, Department of BiologyUniversity of MaraghehMaraghehIran

Personalised recommendations