Advertisement

Yarrowia lipolytica: An Overview

  • Farshad Darvishi HarzeviliEmail author
Chapter
Part of the SpringerBriefs in Microbiology book series (BRIEFSMICROBIOL)

Abstract

The nonconventional yeast Yarrowia lipolytica is an interest for fundamental research and biotechnological applications. The fundamental studies play a crucial role in the establishment and development of the biotechnological processes. Hence, this chapter will give an overview about Y. lipolytica fundamental studies including taxonomy, ecology, morphology, cell biology, physiology, metabolism, genetics, and molecular biology. This yeast is currently used as a model for the study of dimorphism, peroxisome biogenesis, degradation of hydrophobic substrates, protein secretion, and several new fields.

Keywords

Yarrowia lipolytica Nonconventional yeast Model yeast Dimorphism Peroxisome biogenesis Degradation of hydrophobic substrates Protein secretion 

References

  1. Amaral PFF, da Silva JM, Lehocky M, Barros-Timmons AMV, Coelho MAZ, Marrucho IM, Coutinho JAP (2006a) Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem 41(8):1894–1898CrossRefGoogle Scholar
  2. Amaral PFF, de Almeida APR, Peixoto T, Rocha-Leao MHM, Coutinho JAP, Coelho MAZ (2007) Beneficial effects of enhanced aeration using perfluorodecalin in Yarrowia lipolytica cultures for lipase production. World J Microbiol Biotechnol 23(3):339–344CrossRefGoogle Scholar
  3. Amaral PFF, Freire MG, Rocha-Leao MHM, Marrucho IM, Coutinho JAP, Coelho MAZ (2008) Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnol Bioeng 99(3):588–598PubMedCrossRefGoogle Scholar
  4. Amaral PFF, Rocha-Leao MHM, Marrucho IM, Coutinho JAP, Coelho MAZ (2006b) Improving lipase production using a perfluorocarbon as oxygen carrier. J Chem Technol Biotechnol 81(8):1368–1374CrossRefGoogle Scholar
  5. Andrade MJ, Rodriguez M, Sanchez B, Aranda E, Cordoba JJ (2006) DNA typing methods for differentiation of yeasts related to dry-cured meat products. Int J Food Microbiol 107(1):48–58PubMedCrossRefGoogle Scholar
  6. Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp 313–388. doi: 10.1007/978-3-642-79856-6_10
  7. Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19(4):219–237PubMedCrossRefGoogle Scholar
  8. Barth G, Künkel W (1979) Alcohol dehydrogenase (ADH) in yeasts. II. NAD+-and NADP+-dependent alcohol dehydrogenases in Saccharomycopsis lipolytica. Z Allg Mikrobiol 19(6):381–390PubMedCrossRefGoogle Scholar
  9. Barth G, Weber H (1985) Improvement of sporulation in the yeast Yarrowia lipolytica. Antonie Van Leeuwenhoek 51(2):167–177. doi: 10.1007/BF02310010 PubMedCrossRefGoogle Scholar
  10. Beckerich JM, Baudevin AB, Gaillardin C (1998) Yarrowia lipolytica: a model organism for protein secretion studies. Int Microbiol 1:123–130PubMedGoogle Scholar
  11. Biryukova EN, Medentsev AG, Arinbasarova AY, Akimenko VK (2006) Tolerance of the yeast Yarrowia lipolytica to oxidative stress. Microbiol 75(3):243–247CrossRefGoogle Scholar
  12. Casaregola S, Feynerol C, Diez M, Fournier P, Gaillardin C (1997) Genomic organization of the yeast Yarrowia lipolytica. Chromosoma 106(6):380–390PubMedCrossRefGoogle Scholar
  13. Casaregola S, Neuvéglise C, Bon E, Gaillardin C (2002) Ylli, a Non–LTR retrotransposon L1 family in the dimorphic yeast Yarrowia lipolytica. Mol Biol Evol 19(5):664–677PubMedCrossRefGoogle Scholar
  14. Casaregola S, Neuveglise C, Lepingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous Yeasts: 17. Yarrowia lipolytica. FEBS Lett 487(1):95–100PubMedCrossRefGoogle Scholar
  15. Chang C-F, Chen C-C, Lee C-F, Liu S-M (2013) Identifying and characterizing Yarrowia keelungensis sp. nov., an oil-degrading yeast isolated from the sea surface microlayer. Antonie Van Leeuwenhoek 104(6):1117–1123. doi: 10.1007/s10482-013-0033-z PubMedCrossRefGoogle Scholar
  16. Chi Z, Wang F, Wang L, Li J, Wang X (2007) Selection of Yarrowia lipolytica strains with high protein content from yeasts isolated from different marine environments. J Ocean Univ China 6(4):360–364. doi: 10.1007/s11802-007-0360-7 CrossRefGoogle Scholar
  17. Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48(4):747–750PubMedCentralPubMedGoogle Scholar
  18. Cirigliano MC, Carman GM (1985) Purification and characterization of Liposan, a Bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50(4):846–850PubMedCentralPubMedGoogle Scholar
  19. Coelho MAZ, Amaral PFF, Belo I (2010) Yarrowia lipolytica: an industrial workhorse. In: Méndez-Villas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2, 2nd edn. Formatex, Badajoz, pp 930–944Google Scholar
  20. Deak T, Chen J, Beuchat LR (2000) Molecular characterization of Yarrowia lipolytica and Candida zeylanoides isolated from poultry. Appl Environ Microbiol 66(10):4340–4344PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dell’Angelica EC, Stella CA, Ermácora MR, Ramos EH, Santome J (1992) Study on fatty acid binding by proteins in yeast. Dissimilar results in Saccharomyces cerevisiae and Yarrowia lipolytica. Comp Biochem Physiol B Comp Biochem 102(2):261–265. doi:http://dx.doi.org/10.1016/0305-0491(92)90120-G
  22. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, de Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich J-M, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, de Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud J-M, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard G-F, Straub M-L, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet J-L (2004) Genome evolution in yeasts. Nature 430(6995):35–44PubMedCrossRefGoogle Scholar
  23. El-Sherbeini M, Bostia KA, Levitr J, Mitchel D (1987) Gene-protein assignments within the yeast Yarrowia lipolytica dsRNA viral genome. Curr Genet 11(6–7):483–490. doi: 10.1007/BF00384610 PubMedCrossRefGoogle Scholar
  24. Encinas JP, Lopez-Diaz TM, Garcia-Lopez ML, Otero A, Moreno B (2000) Yeast populations on Spanish fermented sausages. Meat Sci 54(3):203–208PubMedCrossRefGoogle Scholar
  25. Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543PubMedCrossRefGoogle Scholar
  26. Flores C-L, Rodríguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts1. FEMS Microbiol Rev 24(4):507–529. doi: 10.1111/j.1574-6976.2000.tb00553.x PubMedCrossRefGoogle Scholar
  27. Fournier P, Gaillardin C, Persuy M-A, Klootwijk J, Heerikhuizen Hv (1986) Heterogeneity in the ribosomal family of the yeast Yarrowia lipolytica: genomic organization and segregation studies. Gene 42(3):273–282. doi:http://dx.doi.org/10.1016/0378-1119(86)90231-3 Google Scholar
  28. Gardini F, Suzzi G, Lombardi A, Galgano F, Crudele MA, Andrighetto C, Schirone M, Tofalo R (2001) A survey of yeasts in traditional sausages of southern Italy. FEMS Yeast Res 1(2):161–167PubMedCrossRefGoogle Scholar
  29. Gardini F, Tofalo R, Belletti N, Iucci L, Suzzi G, Torriani S, Guerzoni ME, Lanciotti R (2006) Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese. Food Microbiol 23(7):641–648PubMedCrossRefGoogle Scholar
  30. Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—A comparison. FEMS Yeast Res 5(11):1079–1096PubMedCrossRefGoogle Scholar
  31. Hassanshahian M, Tebyanian H, Cappello S (2012) Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar Pollut Bull 64(7):1386–1391. doi:http://dx.doi.org/10.1016/j.marpolbul.2012.04.020
  32. Heslot H (1990) Genetics and genetic engineering of the industrial yeast Yarrowia lipolytica. Applied molecular genetics. Springer, Berlin, pp 43–73CrossRefGoogle Scholar
  33. Jacques N, Casaregola S (2008) Safety assessment of dairy microorganisms: the hemiascomycetous yeasts. Int J Food Microbiol 126(3):321–326. doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2007.08.020 Google Scholar
  34. Juretzek T, Le Dall MT, Mauersberger S, Gaillardin C, Barth G, Nicaud JM (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18(2):97–113PubMedCrossRefGoogle Scholar
  35. Kerscher S, Durstewitz G, Casaregola S, Gaillardin C, Brandt U (2001) The complete mitochondrial genome of Yarrowia lipolytica. Comp Funct Genomics 2(2):80–90. doi: 10.1002/cfg.72 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kim J, Cheon SA, Park S, Song Y, Kim JY (2000a) Serum-induced hypha formation in the dimorphic yeast Yarrowia lipolytica. FEMS Microbiol Lett 190(1):9–12PubMedCrossRefGoogle Scholar
  37. Kim TH, Oh YS, Kim SJ (2000b) The possible involvement of the cell surface in aliphatic hydrocarbon utilization by an oil-degrading yeast, Yarrowia lipolytica 180. J Microbiol Biotechnol 10(3):333–337Google Scholar
  38. Klug MJ, Markovetz AJ (1967) Degradation of hydrocarbons by members of the genus candida II. Oxidation of n-Alkanes and 1-Alkenes by Candida lipolytica. J Bacteriol 93(6):1847–1852PubMedCentralPubMedGoogle Scholar
  39. Kohlwein SD, Paltauf F (1984) Uptake of fatty acids by the yeasts, Saccharomyces uvarum and Saccharomycopsis lipolytica. Biochim Biophys Acta 792:310–317PubMedCrossRefGoogle Scholar
  40. Kurtzman CP, Fell JW, Boekhout T (eds) (2011) The yeasts a taxonomic study, 5th edn. Elsevier, London. doi:http://dx.doi.org/10.1016/B978-0-444-52149-1.00196-8
  41. Lachance M-A (2006) Yeast biodiversity: how many and how much? In: Péter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts. The yeast handbook. Springer, Berlin, pp 1–9. doi: 10.1007/3-540-30985-3_1
  42. Lopandic K, Zelger S, Banszky LK, Eliskases-Lechner F, Prillinger H (2006) Identification of yeasts associated with milk products using traditional and molecular techniques. Food Microbiol 23(4):341–350PubMedCrossRefGoogle Scholar
  43. Lopez MC, Nicaud JM, Skinner HB, Vergnolle C, Kader JC, Bankaitis VA, Gaillardin C (1994) A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form. J Cell Biol 125(1):113–127. doi: 10.1083/jcb.125.1.113 PubMedCrossRefGoogle Scholar
  44. Mafakher L, Mirbagheri M, Darvishi F, Nahvi I, Zarkesh-Esfahani H, Emtiazi G (2010) Isolation of lipase and citric acid producing yeasts from agro-industrial wastewater. New Biotechnol 27(4):337–340. doi: 10.1016/j.nbt.2010.04.006 CrossRefGoogle Scholar
  45. Matsuoka M, Matsubara M, Daidoh H, Imanaka T, Uchida K, Aiba S (1993) Analysis of regions essential for the function of chromosomal replicator sequences from Yarrowia lipolytica. Molec Gen Genet 237(3):327–333. doi: 10.1007/BF00279435 PubMedGoogle Scholar
  46. Mekouar M, Blanc-Lenfle I, Ozanne C, Da Silva C, Cruaud C, Wincker P, Gaillardin C, Neuveglise C (2010) Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol 11(6):R65PubMedCentralPubMedCrossRefGoogle Scholar
  47. Mirbagheri M, Nahvi I, Emtiazi G, Mafakher L, Darvishi F (2012) Taxonomic characterization and potential biotechnological applications of Yarrowia lipolytica isolated from meat and meat products. Jundishapur J Microbiol 5(1):346–351. doi: 10.5812/kowsar.20083645.2433 Google Scholar
  48. Murphy GL, Perry JJ (1984) Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi. J Bacteriol 160(3):1171–1174PubMedCentralPubMedGoogle Scholar
  49. Nagy E, Niss M, Dlauchy D, Arneborg N, Nielsen DS, Péter G (2013) Yarrowia divulgata f.a., sp. nov., a yeast species from animal-related and marine sources. Int J Syst Evol Microbiol 63(12):4818–4823. doi: 10.1099/ijs.0.057208-0
  50. Nicaud J-M (2012) Yarrowia lipolytica. Yeast 29(10):409–418. doi: 10.1002/yea.2921 PubMedCrossRefGoogle Scholar
  51. Nuttley WM, Brade AM, Eitzen GA, Glover JR, Aitchison JD, Rachubinski RA, Gaillardin C (1993) Rapid identification and characterization of peroxisomal assembly mutants in Yarrowia lipolytica. Yeast 9(5):507–517. doi: 10.1002/yea.320090506 CrossRefGoogle Scholar
  52. Ogrydziak D, Bassel J, Contopoulou R, Mortimer R (1978) Development of genetic techniques and the genetic map of the yeast Saccharomycopis lipolytica. Molec Gen Genet 163(3):229–239. doi: 10.1007/BF00271953 CrossRefGoogle Scholar
  53. Papanikolaou S, Aggelis G (2003) Selective uptake of fatty acids by the yeast Yarrowia lipolytica. Eur J Lipid Sci Technol 105(11):651–655CrossRefGoogle Scholar
  54. Perez-Campo FM, Dominguez A (2001) Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr Microbiol 43(6):429–433PubMedCrossRefGoogle Scholar
  55. Poritz MA, Siegel V, Hansen W, Walter P (1988) Small ribonucleoproteins in Schizosaccharomyces pombe and Yarrowia lipolytica homologous to signal recognition particle. Proc Natl Acad Sci 85(12):4315–4319PubMedCentralPubMedCrossRefGoogle Scholar
  56. Rodrigues G, Pais C (2000) The influence of acetic and other weak carboxylic acids on growth and cellular death of the yeast Yarrowia lipolytica. Food Technol Biotechnol 38(1):27–32Google Scholar
  57. Rosas-Quijano R, Gaillardin C, Ruiz-Herrera J (2008) Functional analysis of the MATB mating-type idiomorph of the dimorphic fungus Yarrowia lipolytica. Curr Microbiol 57(2):115–120. doi: 10.1007/s00284-008-9162-4 PubMedCrossRefGoogle Scholar
  58. Ruiz-Herrera J, Sentandreu R (2002) Different effectors of dimorphism in Yarrowia lipolytica. Arch Microbiol 178(6):477–483PubMedCrossRefGoogle Scholar
  59. Sanz A, Martin R, Mayoral MB, Hernandez PE, Gonzalez I, Lacarra TG (2005) Development of a PCR-culture technique for rapid detection of yeast species in vacuum packed ham. Meat Sci 71(2):230–237PubMedCrossRefGoogle Scholar
  60. Scheller U, Zimmer T, Becher D, Schauer F, Schunck W-H (1998) Oxygenation cascade in conversion of n-Alkanes to alpha, omega-dioic acids catalyzed by cytochrome P450 52A3. J Biol Chem 273(49):32528–32534. doi: 10.1074/jbc.273.49.32528 PubMedCrossRefGoogle Scholar
  61. Snow R (1966) An enrichment method for auxotrophic yeast mutants using the antibiotic ‘nystatin’. Nature 211(5045):206–207PubMedCrossRefGoogle Scholar
  62. Spencer JFT, de Spencer ALR, Laluce C (2002) Non-conventional yeasts. Appl Microbiol Biotechnol 58(2):147–156PubMedCrossRefGoogle Scholar
  63. Swennen D, Beckerich JM (2007) Yarrowia lipolytica vesicle-mediated protein transport pathways. BMC Evol Biol 7(219):1–19Google Scholar
  64. Tréton B, Dall M-T, Heslot H (1985) Virus-like particles from the yeast Yarrowia lipolytica. Curr Genet 9(4):279–284. doi: 10.1007/BF00419956 CrossRefGoogle Scholar
  65. van Heerikhuizen H, Ykema A, Klootwijk J, Gaillardin C, Ballas C, Fournier P (1985) Heterogeneity in the ribosomal RNA genes of the yeast Yarrowia lipolytica; cloning and analysis of two size classes of repeats. Gene 39(2–3):213–222PubMedCrossRefGoogle Scholar
  66. Vasdinyei R, Deak T (2003) Characterization of yeast isolates originating from Hungarian dairy products using traditional and molecular identification techniques. Int J Food Microbiol 86(1–2):123–130PubMedCrossRefGoogle Scholar
  67. Vernis L, Abbas A, Chasles M, Gaillardin CM, Brun C, Huberman JA, Fournier P (1997) An origin of replication and a centromere are both needed to establish a replicative plasmid in the yeast Yarrowia lipolytica. Mol Cell Biol 17(4):1995–2004PubMedCentralPubMedGoogle Scholar
  68. Zinjarde SS, Pant A (2002) Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J Basic Microbiol 42(1):67–73PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Division of Microbiology, Department of BiologyUniversity of MaraghehMaraghehIran

Personalised recommendations