Skip to main content

Image Processing Algorithms Implementation Using Quantum Cellular Automata

  • Chapter
Cellular Automata in Image Processing and Geometry

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 10))

Abstract

This chapter presents the implementation of Quantum-dot Cellular Automata (QCA) technology for image processing mathematical morphology operations. The basic concepts for both mathematical morphology and QCA technology are briefly described. QCA is a very promising emerging technology in the field of nanoelectronics that seems to suit well with image processing needs. The design of QCA circuits fundamental components are presented and the methodology that should be followed for a robust design of more complex circuits is recorded. Two QCA circuits for the implementation of morphological erosion and dilation are designed, simulated and tested. Results show that the QCA architecture provide better performance by exploiting parallel processing, ease of mask generation, better silicon-area utilization, maximization of clock speed and very low power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhanja, S., Sarkar, S.: Thermal switching error versus delay tradeoffs in clocked QCA circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16(5), 528–541 (2008)

    Article  Google Scholar 

  2. Bubna, M., Roy, S., Shenoy, N., Mazumdar, S.: A layout-aware physical design method for constructing feasible QCA circuits. In: Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI, pp. 243–248 (2008)

    Google Scholar 

  3. Cardenas-Barrera, J.L., Plataniotis, K.N., Venetsanopoulos, A.N.: QCA implementation of a multichannel filter for image processing. Mathematical Problems in Engineering 8(1), 87–99 (2002)

    Article  MATH  Google Scholar 

  4. Chatzichristofis, S.A., Mitzias, D.A., Sirakoulis, G.C., Boutalis, Y.S.: A novel cellular automata based technique for visual multimedia content encryption. Optics Communications 283(21), 4250–4260 (2010)

    Article  Google Scholar 

  5. Chatzis, V., Pitas, I.: A generalized fuzzy mathematical morphology and its application in robust 2-D and 3-D object representation. IEEE Transactions on Image Processing 9(10), 1798–1810 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chatzis, V., Pitas, I.: Interpolation of 3-D binary images based on morphological skeletonization. IEEE Transactions on Medical Imaging 19(7), 699–710 (2000)

    Article  Google Scholar 

  7. Cho, H., Swartzlander Jr., E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Transactions on Computers 58(6), 721–727 (2009)

    Article  MathSciNet  Google Scholar 

  8. Choi, M., Patitz, Z., Jin, B., Tao, F., Park, N., Choi, M.: Designing layout-timing independent quantum-dot cellular automata (QCA) circuits by global asynchrony. Journal of Systems Architecture 53(9), 551–567 (2007)

    Article  Google Scholar 

  9. Feynman, R.E.: Simulating physics with computers. International Journal of Theoretical Physics 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  10. Fonseca, L.R.C., Korotkov, A.N., Likharev, K.K., Odintsov, A.A.: A numerical study of the dynamics and statistics of single electron systems. Journal of Applied Physics 78(5), 3238–3251 (1995)

    Article  Google Scholar 

  11. Gasteratos, A., Andreadis, I.: Non-linear image processing in hardware. Pattern Recognition 33(6), 1013–1021 (2000)

    Article  Google Scholar 

  12. Gladshtein, M.: Quantum-dot cellular automata serial decimal adder. IEEE Transactions on Nanotechnology 10(6), 1377–1382 (2011)

    Article  Google Scholar 

  13. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-9(4), 532–550 (1987)

    Article  Google Scholar 

  14. Haris, K., Efstratiadis, S.N., Maglaveras, N., Katsaggelos, A.K.: Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing 7(12), 1684–1699 (1998)

    Article  Google Scholar 

  15. Hernandez, O.J., Keohane, T., Steponanko, J.: A combined VLSI architecture for nonlinear image processing filters. In: Conference Proceedings - IEEE SOUTHEASTCON, vol. 2006, pp. 261–266 (2006)

    Google Scholar 

  16. Hoekstra, J.: On circuit theories for single-electron tunneling devices. IEEE Transactions on Circuits and Systems I: Regular Papers 54(11 SPEC. ISS.), 2353–2359 (2007)

    Google Scholar 

  17. Huang, J., Momenzadeh, M., Lombardi, F.: Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. Integration, the VLSI Journal 40(4), 503–515 (2007)

    Article  Google Scholar 

  18. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

    Article  Google Scholar 

  19. International Technology Roadmap for Semiconductors: Emerging Research Devices (2007), www.itrs.net

  20. Jiao, J., Long, G.J., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Building blocks for the molecular expression of quantum cellular automata. isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. Journal of the American Chemical Society 125(25), 7522–7523 (2003)

    Article  Google Scholar 

  21. Kim, C.: Segmenting a low-depth-of-field image using morphological filters and region merging. IEEE Transactions on Image Processing 14(10), 1503–1511 (2005)

    Article  Google Scholar 

  22. Kim, K., Wu, K., Karri, R.: Towards designing robust QCA architectures in the presence of sneak noise paths. In: Proceedings -Design, Automation and Test in Europe, DATE 2005, vol. II, pp. 1214–1219 (2005)

    Google Scholar 

  23. Kim, K., Wu, K., Karri, R.: Quantum-dot cellular automata design guideline. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A(6), 1607–1614 (2006)

    Article  Google Scholar 

  24. Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable qca building blocks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 26(1), 176–183 (2007)

    Article  Google Scholar 

  25. Konstantinidis, K., Sirakoulis, G.C., Andreadis, I.: Design and implementation of a fuzzy-modified ant colony hardware structure for image retrieval. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 39(5), 520–533 (2009)

    Article  Google Scholar 

  26. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Transactions on Electron Devices 50(9), 1890–1896 (2003)

    Article  Google Scholar 

  27. Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. Journal of the American Chemical Society 125(4), 1056–1063 (2003)

    Article  Google Scholar 

  28. Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: A binary wire. Journal of Applied Physics 74(10), 6227–6233 (1993)

    Article  Google Scholar 

  29. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)

    Article  Google Scholar 

  30. Manimaran, M., Snider, G.L., Lent, C.S., Sarveswaran, V., Lieberman, M., Li, Z., Fehlner, T.P.: Scanning tunneling microscopy and spectroscopy investigations of QCA molecules. Ultramicroscopy 97(1-4), 55–63 (2003)

    Article  Google Scholar 

  31. Maragos, P., Schafer, R.W.: Morphological filters - Part I: Their set - theoretic analysis and relations to linear shift - invariant filters. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-35(8), 1153–1169 (1987)

    Article  MathSciNet  Google Scholar 

  32. Mardiris, V.A.: Design and simulation of quantum cellular automata nanoelectronic circuits. PhD thesis, Democritus University of Thrace (2011)

    Google Scholar 

  33. Mardiris, V.A., Karafyllidis, I.G.: Universal cellular automaton cell using quantum cellular automata. Electronics Letters 45(12), 607–609 (2009)

    Article  Google Scholar 

  34. Mardiris, V.A., Karafyllidis, I.G.: Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. International Journal of Circuit Theory and Applications 38(8), 771–785 (2010)

    MATH  Google Scholar 

  35. Mardiris, V.A., Karafyllidis, I.G.: Design and simulation of modular quantum-dot cellular automata multiplexers for memory accessing. Journal of Circuits, Systems and Computers 19(2), 349–365 (2010)

    Article  Google Scholar 

  36. Meyer, F., Beucher, S.: Morphological segmentation. Journal of Visual Communication and Image Representation 1(1), 21–46 (1990)

    Article  Google Scholar 

  37. Mohanty, B.K., Meher, P.K.: New scan method and pipeline architecture for VLSI implementation of separable 2-D FIR filters without transposition. In: IEEE Region 10 Annual International Conference, Proceedings/TENCON (2008)

    Google Scholar 

  38. Momenzadeh, M., Huang, J., Lombardi, F.: Defect characterization and tolerance of QCA sequential devices and circuits. In: Proceedings - IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 199–207 (2005)

    Google Scholar 

  39. Navi, K., Farazkish, R., Sayedsalehi, S., Rahimi Azghadi, M.: A new quantum-dot cellular automata full-adder. Microelectronics Journal 41(12), 820–826 (2010)

    Article  Google Scholar 

  40. Neto, O.P.V., Pacheco, M.A.C., Hall Barbosa, C.R.: Neural network simulation and evolutionary synthesis of QCA circuits. IEEE Transactions on Computers 56(2), 191–201 (2007)

    Article  Google Scholar 

  41. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)

    Google Scholar 

  42. Niemier, M.T., Kogge, P.M.: Problems in designing with QCAs: Layout = timing. International Journal of Circuit Theory and Applications 29(1), 49–62 (2001)

    Article  Google Scholar 

  43. Niemier, M.T., Kontz, M.J., Kogge, P.M.: Design of and design tools for a novel quantum dot based microprocessor. In: Proceedings - Design Automation Conference, pp. 228–232 (2000)

    Google Scholar 

  44. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277(5328), 928–930 (1997)

    Article  Google Scholar 

  45. Panagiotopoulos, F.K., Mardiris, V.A., Chatzis, V.: Quantum–dot cellular automata design for median filtering and mathematical morphology operations on binary images. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 554–564. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  46. Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 39(2), 309–320 (2001)

    Article  Google Scholar 

  47. Pirsch, P., Stolberg, H.J.: VLSI implementations of image and video multimedia processing systems. IEEE Transactions on Circuits and Systems for Video Technology 8(7), 878–891 (1998)

    Article  Google Scholar 

  48. Rabaey, J.M., Gass, W., Brodersen, R., Nishitani, T.: VLSI design and implementation fuels the signal-processing revolution: The design and implementation of signal-processing systems technical committee. IEEE Signal Processing Magazine 15(1), 22–37 (1998)

    Article  Google Scholar 

  49. Saponara, S., Fanucci, L., Terreni, P.: Design of a low-power VLSI macrocell for nonlinear adaptive video noise reduction. Eurasip Journal on Applied Signal Processing 2004(12), 1921–1930 (2004)

    Article  Google Scholar 

  50. Sen, B., Anand, A.S., Adak, T., Sikdar, B.K.: Thresholding using quantum-dot cellular automata. In: 2011 International Conference on Innovations in Information Technology, IIT 2011, pp. 356–360 (2011)

    Google Scholar 

  51. Serra, J.: Image analysis and mathematical morphology: Theoretical advances. Image Analysis and Mathematical Morphology. Academic Press (1988)

    Google Scholar 

  52. Serra, J.: Image Analysis and Mathematical Morphology. Acad. Press (1993)

    Google Scholar 

  53. Shamsabadi, A.S., Ghahfarokhi, B.S., Zamanifar, K., Movahedinia, N.: Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. Journal of Systems Architecture 55(3), 180–187 (2009)

    Article  Google Scholar 

  54. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A CAD system for the construction and VLSI implementation of cellular automata algorithms using VHDL. Microprocessors and Microsystems 27(8), 381–396 (2003)

    Article  Google Scholar 

  55. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A., Mardiris, V.: A methodology for VLSI implementation of cellular automata algorithms using VHDL. Advances in Engineering Software 32(3), 189–202 (2000)

    Article  Google Scholar 

  56. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer (2010)

    Google Scholar 

  57. Strauss, W.: Digital signal processing. IEEE Signal Processing Magazine 17(2), 52–56 (2000)

    Article  Google Scholar 

  58. Taskin, B., Hong, B.: Improving line-based QCA memory cell design through dual phase clocking. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16(12), 1648–1656 (2008)

    Article  Google Scholar 

  59. Teja, V.C., Polisetti, S., Kasavajjala, S.: QCA based multiplexing of 16 arithmetic and logical subsystems-a paradigm for nano computing. In: 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS, pp. 758–763 (2008)

    Google Scholar 

  60. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica D: Nonlinear Phenomena 10(1-2), 117–127 (1984)

    Article  MathSciNet  Google Scholar 

  61. Tougaw, P.D.: A device architecture for computing with quantum dots. Proceedings of the IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  62. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. Journal of Applied Physics 75(3), 1818–1825 (1994)

    Article  Google Scholar 

  63. Tseng, P.C., Chang, Y.C., Huang, Y.W., Fang, H.C., Huang, C.T., Chen, L.G.: Advances in hardware architectures for image and video coding - a survey. Proceedings of the IEEE 93(1), 184–197 (2005)

    Article  Google Scholar 

  64. Vankamamidi, V., Ottavi, M., Lombardi, F.: A line-based parallel memory for QCA implementation. IEEE Transactions on Nanotechnology 4(6), 690–698 (2005)

    Article  Google Scholar 

  65. Vankamamidi, V., Ottavi, M., Lombardi, F.: A serial memory by quantum-dot cellular automata (QCA). IEEE Transactions on Computers 57(5), 606–618 (2008)

    Article  MathSciNet  Google Scholar 

  66. Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(1), 34–44 (2008)

    Article  Google Scholar 

  67. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Transactions on Nanotechnology 3(1 SPEC. ISS.), 26–31 (2004)

    Article  Google Scholar 

  68. Wang, J.M., Sukhwani, B., Padmanabhan, U., Ma, D., Sinha, K.: Simulation and design of nanocircuits with resonant tunneling devices. IEEE Transactions on Circuits and Systems I: Regular Papers 54(6), 1293–1304 (2007)

    Article  MATH  Google Scholar 

  69. Wolfram, S.: Theory and Applications of Cellular Automata: Including Selected Papers, 1983-1986. Advanced Series on Complex Systems. World Scientific Publishing Company, Incorporated (1986)

    Google Scholar 

  70. Zardalidis, G., Karafyllidis, I.G.: SECS: A new single-electron-circuit simulator. IEEE Transactions on Circuits and Systems I: Regular Papers 55(9), 2774–2784 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Mardiris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mardiris, V., Chatzis, V. (2014). Image Processing Algorithms Implementation Using Quantum Cellular Automata. In: Rosin, P., Adamatzky, A., Sun, X. (eds) Cellular Automata in Image Processing and Geometry. Emergence, Complexity and Computation, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-06431-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06431-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06430-7

  • Online ISBN: 978-3-319-06431-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics