Skip to main content

Skeletonizing Digital Images with Cellular Automata

  • Chapter
Cellular Automata in Image Processing and Geometry

Abstract

The skeletonization of an image consists of converting the initial image into a more compact representation. In general, the skeleton preserves the basic structure and, in some sense, keeps the meaning. The most important features concerning a shape are its topology (represented by connected components, holes, etc.) and its geometry (elongated parts, ramifications, etc.), thus they must be preserved. Skeletonization is usually considered as a pre-processing step in pattern recognition algorithms, but its study is also interesting by itself for the analysis of line-based images such as texts, line drawings, human fingerprints classification or cartography.

Since the introduction of the concept by Blum in 1962 under the name of medial axis transform, many algorithms have been published in this topic and there are many different approaches to the problem, among them the ones based on distance transform of the shape and skeleton pruning based on branch analysis. In this chapter, we focus on how the skeletonization of an image can be studied in the Cellular Automata framework and, as a case study, we consider in detail the Guo and Hall skeletonizing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acerbi, L., Dennunzio, A., Formenti, E.: Conservation of some dynamical properties for operations on cellular automata. Theoretical Computer Science 410(38-40), 3685–3693 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Altuwaijri, M., Bayoumi, M.: A new thinning algorithm for Arabic characters using self-organizing neural network. In: 1995 IEEE International Symposium on Circuits and Systems, ISCAS 1995, vol. 3, pp. 1824–1827 (1995)

    Google Scholar 

  3. Ammann, C., Sartori Angus, A.: Fast thinning algorithm for binary images. Image Vision and Computing 3(2), 71–79 (1985)

    Article  Google Scholar 

  4. Arcelli, C., di Baja, G.S.: Euclidean skeleton via centre-of-maximal-disc extraction. Image and Vision Computing 11(3), 163–173 (1993)

    Article  Google Scholar 

  5. Attali, D., Boissonnat, J.D., Edelsbrunner, H.: Stability and Computation of Medial Axes - a State-of-the-Art Report. In: Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, ch. 6, pp. 109–125. Springer, Heidelberg (2009)

    Google Scholar 

  6. di Baja, G.S., Thiel, E.: Skeletonization algorithm running on path-based distance maps. Image and Vision Computing 14(1), 47–57 (1996)

    Article  Google Scholar 

  7. Baruch, O.: Line thinning by line following. Pattern Recognition Letters 8(4), 271–276 (1988)

    Article  Google Scholar 

  8. Betel, H., Flocchini, P.: On the relationship between fuzzy and boolean cellular automata. Theoretical Computer Science 412(8-10), 703–713 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Biasotti, S., Attali, D., Boissonnat, J.D., Edelsbrunner, H., Elber, G., Mortara, M., Baja, G.S., Spagnuolo, M., Tanase, M., Veltkamp, R.: Skeletal structures. In: Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring, Mathematics and Visualization, pp. 145–183. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Blum, H.: An associative machine for dealing with the visual field and some of its biological implications. In: Bernard, E.E., Kare, M.R. (eds.) Biological Prototypes and Synthetic Systems, vol. 1, pp. 244–260. Plenum Press, New York (1962), Proceedings of the 2nd Annual Bionics Symposium, held at Cornell University (1961)

    Google Scholar 

  11. Blum, H.: An associative machine for dealing with the visual field and some of its biological implications. In: Computer and Mathematical Sciences Laboratory, Electronics Research Directorate, Air Force Cambridge Research Laboratories, Office of Aerospace Research. United States Air Force (1962)

    Google Scholar 

  12. Cattaneo, G., Dennunzio, A., Margara, L.: Solution of some conjectures about topological properties of linear cellular automata. Theoretical Computer Science 325(2), 249–271 (2004), Theoretical Aspects of Cellular Automata

    Google Scholar 

  13. Chauhan, S.: Survey paper on training of cellular automata for image. International Journal of Engineering and Computer Science 2(4), 980–985 (2013)

    MathSciNet  Google Scholar 

  14. Chen, Y.S.: The use of hidden deletable pixel detection to obtain bias-reduced skeletons in parallel thinning. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 2, pp. 91–95. IEEE Computer Society, Washington, DC (1996)

    Chapter  Google Scholar 

  15. Chen, Y.S., Hsu, W.H.: Systematic approach for designing 2-subcycle and pseudo 1-subcycle parallel thinning algorithms. Pattern Recognition 22(3), 267–282 (1989)

    Article  Google Scholar 

  16. Dinneen, G.P.: Programming pattern recognition. In: Proceedings of the Western Joint Computer Conference, AFIPS 1955 (Western), pp. 94–100. ACM, New York (1955)

    Chapter  Google Scholar 

  17. Dufresne, T.E., Sarwal, A., Dhawan, A.P.: A gray-level thinning method for delineation and representation of arteries. Computerized Medical Imaging and Graphics 18(5), 343–355 (1994)

    Article  Google Scholar 

  18. Favre, A., Keller, H.: Parallel syntactic thinning by recoding of binary pictures. Computer Vision, Graphics, and Image Processing 23(1), 99–112 (1983)

    Article  Google Scholar 

  19. Gil Montoya, M., Garcia, I.: Implementation of parallel thinning algorithms on multicomputers: analysis of the work load balance. In: Proceedings of the Sixth Euromicro Workshop on Parallel and Distributed Processing, PDP 1998, pp. 257–263 (1998)

    Google Scholar 

  20. González, R.C., Woods, R.E.: Digital image processing. Pearson/Prentice Hall (2008)

    Google Scholar 

  21. Guo, Z., Hall, R.W.: Parallel thinning with two-subiteration algorithms. Communications of the ACM 32, 359–373 (1989)

    Article  MathSciNet  Google Scholar 

  22. Guo, Z., Hall, R.W.: Fast fully parallel thinning algorithms. CVGIP: Image Understanding 55, 317–328 (1992)

    Article  MATH  Google Scholar 

  23. Hernandez, G., Herrmann, H.: Cellular-automata for elementary image-enhancement. Graphical Models and Image Processing 58(1), 82–89 (1996)

    Article  Google Scholar 

  24. Heydorn, S., Weidner, P.: Optimization and performance analysis of thinning algorithms on parallel computers. Parallel Computing 17(1), 17–27 (1991)

    Article  MATH  Google Scholar 

  25. Hilditch, C.: An application of graph theory in pattern recognition. Machine Intelligence 3, 325–347 (1968)

    MATH  Google Scholar 

  26. Holt, C., Stewart, A.: A parallel thinning algorithm with fine grain subtasking. Parallel Computing 10(3), 329–334 (1989)

    Article  MATH  Google Scholar 

  27. Hongbin, P., Junali, C., Yashe, Z.: Fingerprint thinning algorithm based on mathematical morphology. In: 8th International Conference on Electronic Measurement and Instruments, ICEMI 2007, pp. 2–618–2–621 (2007)

    Google Scholar 

  28. Kirsch, R.A., Cahn, L., Ray, C., Urban, G.H.: Experiments in processing pictorial information with a digital computer. In: Papers and Discussions Presented at the December 9-13, Eastern Joint Computer Conference: Computers with Deadlines to Meet, IRE-ACM-AIEE 1957 (Eastern), pp. 221–229. ACM, New York (1958)

    Google Scholar 

  29. Lee, K.H., Cho, S.B., Choy, Y.C.: Automated vectorization of cartographic maps by a knowledge-based system. Engineering Applications of Artificial Intelligence 13(2), 165–178 (2000)

    Article  Google Scholar 

  30. Liu, L.: 3D thinning on cell complexes for computing curve and surface skeletons. Washington University (2009)

    Google Scholar 

  31. Liu, L., Chambers, E.W., Letscher, D., Ju, T.: A simple and robust thinning algorithm on cell complexes. Computer Graphics Forum 29(7), 2253–2260 (2010)

    Article  Google Scholar 

  32. Lü, H.E., Wang, P.S.P.: A comment on a fast parallel algorithm for thinning digital patterns. Communications of the ACM 29(3), 239–242 (1986)

    Article  Google Scholar 

  33. Nedzved, A., Ilyich, Y., Ablameyko, S., Kamata, S.: Color thinning with applications to biomedical images. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 256–263. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  34. Pavlidis, T.: Algorithms for Graphics and Image Processing. Digital system design series. Computer Science Press (1982)

    Google Scholar 

  35. Peña-Cantillana, F., Berciano, A., Díaz-Pernil, D., Gutiérrez-Naranjo, M.A.: Parallel skeletonizing of digital images by using cellular automata. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 39–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  36. Rosenfeld, A.: A characterization of parallel thinning algorithms. Information and Control 29(3), 286–291 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rosin, P.L.: Training cellular automata for image processing. IEEE Transactions on Image Processing 15(7), 2076–2087 (2006)

    Article  Google Scholar 

  38. Rutovitz, D.: Pattern recognition. Journal of the Royal Statistical Society 129, 504–530 (1966)

    Article  Google Scholar 

  39. Saeed, K., Tabedzki, M., Rybnik, M., Adamski, M.: K3M: A universal algorithm for image skeletonization and a review of thinning techniques. Applied Mathematics and Computer Science 20(2), 317–335 (2010)

    MATH  Google Scholar 

  40. de Saint Pierre, T., Milgram, M.: New and efficient cellular algorithms for image processing. CVGIP: Image Understanding 55(3), 261–274 (1992)

    Article  MATH  Google Scholar 

  41. Siddiqi, K., Pizer, S.: Medial representations: mathematics, algorithms and applications. Computational imaging and vision. Springer (2008)

    Google Scholar 

  42. Smith, S.J., Bourgoin, M.O., Sims, K., Voorhees, H.L.: Handwritten character classification using nearest neighbor in large databases. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(9), 915–919 (1994)

    Article  Google Scholar 

  43. Suzuki, S., Abe, K.: Binary picture thinning by an iterative parallel two-subcycle operation. Pattern Recognition 20(3), 297–307 (1987)

    Article  Google Scholar 

  44. Ye, Q.Z., Danielsson, P.E.: Inspection of printed circuit boards by connectivity preserving shrinking. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5), 737–742 (1988)

    Article  Google Scholar 

  45. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Communications of the ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  46. Zhang, Y.Y., Wang, P.S.P.: A parallel thinning algorithm with two-subiteration that generates one-pixel-wide skeletons. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 4, pp. 457–461 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Díaz-Pernil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Díaz-Pernil, D., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A. (2014). Skeletonizing Digital Images with Cellular Automata. In: Rosin, P., Adamatzky, A., Sun, X. (eds) Cellular Automata in Image Processing and Geometry. Emergence, Complexity and Computation, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-06431-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06431-4_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06430-7

  • Online ISBN: 978-3-319-06431-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics